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Enhanced Structural Stability

ABSTRACT: Anionic oxygen redox chemistry in Li-rich Mn-based layer ~Quasi-Ordered Cathode

[ —

oxide cathodes represents a transformative approach for boosting the issaiste i
energy density of next-generation lithium-ion batteries. However,

Irreversible 0,2/0,

conventional oxygen redox reactions often induce oxygen dimerization S4 Reversible Oxidized O
at high voltages, leading to irreversible lattice oxygen loss and a rapid | g
voltage fade. Herein, we achieve highly reversible oxygen redox chemistry Ni O £

Li >3

through a new quasi-ordered structural design that incorporates both
intra- and interlayer cation disorder configurations. This unique structure
significantly enhances lattice oxygen stability, effectively stabilizes
oxidized oxygen, and inhibits the formation of peroxo- or superoxol-
like species, thereby enabling anionic redox reactions to proceed
reversibly even at deep delithiation states. The quasi-ordered design
mitigates irreversible phase transitions and preserves the structural integrity throughout extended cycling. Consequently, the
proposed cathode demonstrates exceptional cyclability with negligible capacity and voltage fade, retaining 99% capacity and 98%
average voltage after long-term cycling. This work provides fresh insights into addressing issues related to lattice oxygen instabilities
and reforming strategies for developing long-life, high-energy-density anionic redox cathode materials for advanced batteries.
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Bl INTRODUCTION

The limited capacity of conventional cathodes poses a
significant bottleneck in the development of high-energy-
density Li-ion batteries, which are essential for long-range
electric vehicle technologies." Achieving high reversible
capacity requires a delicate balance of substantial redox center
activity and sufficient Li" storage active sites to facilitate
reversible Li* insertion and extraction within the structural
framework.” Compared to conventional layered oxide cathodes
that mainly relies on transition metal (TM) redox for capacity,
Li-rich Mn-based cathodes incorporate cationic and anionic
redox reactions with Li* storing in both the Li and TM slabs
simutaneously.” The Li—O-Li special configurations (non-
bonding O) in Li-rich cathodes position the O 2p states near
the top of the valence band, making oxygen oxidation
thermodynamically accessible and enabling substantial capacity
contributions from oxygen redox during cycling.”® However,
these extra capacities from oxygen redox reactions often come
at the expense of voltage stability and capacity retention,”
which not only shorten cycle life but also complicates battery
management, hindering their large-scale practical deployment.
The instability of oxygen redox chemistry is primarily
associated with Li-rich ordered configuration, where abundant
and spatially proximate nonbonding O atoms increase
susceptibility to oxygen loss and irreversible TM migration
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toward TM dense phases.8 Specifically, in Li-rich domains with
localized LiMng honeycomb superstructure ordering, TM
migration is thermodynamically favorable during delithiation,
creating intralayer vacancies and initiating the formation of
low-coordination oxidized oxygen species.”'’ Locally enriched
oxidized O species often aggregate and dimerize, forming
peroxo- and superoxo-like species and even oxygen mole-
cules,”'" which subsequently escapes from the lattice, leading
to irreversible structural degradation and nanovoid forma-
tion.'” Efforts to mitigate lattice oxygen instability during
cycling have included strategies such as increasing the TM
migration barrier through modified interlayer stacking'>'* or
constructing ordered TM ribbon or mesh structures within the
TM layers to spatially separate oxidized oxygen.'”'® Specifi-
cally, in O,-type Li-rich cathodes, structural stability originates
from the specific lattice stacking sequence, where intralayer
TM migration is thermodynamically suppressed due to strong
repulsion between face-sharing cations.'”'® This suppression
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Figure 1. Structural characterization of the QO-LRM cathode. Combined Rietveld refinement of X-ray diffraction (a) and neutron diffraction (b)
patterns for QO-LRM. (c) Raman spectra of QO-LRM and LRM. (d) FT-EXAFS at the Ni K-edge, illustrating local structural environments in
QO-LRM and LRM. (e) Schematic diagram of the quasi-ordered structure configuration. (f) HAADF-STEM images showing the atomic
arrangement of QO-LRM. Scale bar: 1 nm. Enlarged views highlighting the Li-rich (g) and LiTMO, (h) structures. Scale bars: 0.5 nm. (i, j) Atomic
intensity distribution along the selected columns marked by dashed rectangles in (g) and (h), respectively.

facilitates reversible TM migration and enhances the structural
robustness during cycling. While these approaches improve
electrochemical performance to some extent, they have not yet
prevented structural instability during prolonged cycling.
Another concept like disordered rock-salt cathodes can disrupt
TM/Li ordering and maintain substantial oxygen redox for
ultrahigh capacity. However, these materials still experience
significant oxygen loss and irreversible cation rearrangement,
which damages Li diffusion percolation paths and leads to
rapid capacity and voltage fade.'” Therefore, the state-of-the-
art material paradigm fails to overcome the intrinsic instability
of lattice oxygen redox, necessitating the leverage of new
material science principles to create a stable local lattice oxygen
binding environment.

Beyond typical Li-rich cathodes, we introduce a new Co-free
Li-rich Mn-based quasi-ordered layered structure cathode
(QO-LRM) in this work, featuring both intra- and interlayer
cation disorder configurations to address the long-standing
challenge of lattice oxygen instability-induced electrochemical
decay. The unique structural design, featuring a short-range,
partially Ni-substituted intralayer LiMngs honeycomb super-
structure and a high degree of interlayer cation disorder,
effectively mitigates the formation of peroxo- or superoxol-like
species and facilitates reversible anionic redox. This innovation
extends the upper voltage and utilization limit for reversible
lattice oxygen reactions, delivering over three times the
reversible oxygen anion redox capacity of conventional Li-
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rich cathodes while maintaining exceptional lattice oxygen
stability and structural integrity over long-term cycling.
Consequently, the designed QO-LRM cathode demonstrates
a high capacity of 262 mAh g~' with ultrastable O redox
chemistry, showing negligible capacity and voltage decay, with
a capacity retention of 99% and a voltage retention of 98%
after 100 cycles. This work establishes a promising framework
for rational structure design to achieve high-performance
anionic redox cathodes for next-generation batteries.

B RESULTS AND DISCUSSION

Characterization of the Quasi-Ordered Structure
Design. The QO-LRM material was prepared by coprecipi-
tation followed by a molten salt procedure (see Experimental
section in the Supporting Information). The chemical
composition was determined to be LijgsMny,,Nij130, by
inductively coupled plasma-optical emission spectroscopy
(ICP-OES, Table S1). Powder X-ray diffraction (XRD) and
neutron diffraction (ND) were employed to characterize the
lattice structure of the QO-LRM cathode. Figure lab shows
characteristic Bragg diffraction peaks indicative of a well-
defined layered structure of the R-3m space group, with
additional superlattice peaks at around q = 1.5 A correspond-
ing to the honeycomb LiMng superstructure units in the TM
layers. The combined refinement results of XRD and ND
reveal that QO-LRM contains 3.97% of the Li/TM disorder
(Tables S2 and S3), which is significantly higher than that of
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Figure 2. Electrochemical performance of the QO-LRM cathode. (a) Charge—discharge curves of QO-LRM for the first three cycles at a current
rate of 0.1C within the voltage range of 2.0—4.65 V. (b) Corresponding dQ/dV profiles for QO-LRM. (c) Rate performance of the QO-LRM
cathode. Capacity stability (d) and average voltage stability (e) of QO-LRM at 0.2C. (f) Charge—discharge profiles of QO-LRM from the Sth to

the 100th cycle at a current rate of 0.2C.

0.89% in Li;,Mn;¢Niy,0, (denoted as LRM, Figure S1 and
Tables S4 and S5), a typical Co-free Li-rich Mn-based cathode,
demonstrating a pronounced interlayer disordered arrange-
ment of cations. Additionally, the QO-LRM cathode exhibits a
broadened superstructure peak with reduced peak intensity
compared to that of the LRM cathode (Figure S2), which is
attributed to superlattice structure distortion and stacking
faults. Raman spectroscopy was performed to further
investigate the local structural characteristics (Figure Ic).
Specifically, two peaks around 470 and 590 cm™" represent the
E, and A,, vibrations of the LiTMO,-type layered structure,
respectively.'® The peak around 416 cm™ in the spectrum of
LRM is identified as the fingerprint of the Li,MnOj-like
phase,">'? which significantly decreases in QO-LRM, aligning
with the XRD and ND results and confirming the intralayer
disorder structure with substantial decrease in long-range order
of honeycomb superlattice within the QO-LRM cathode.
Fourier transform extended X-ray absorption fine structures
(FT-EXAFS) further examined the local structure config-
urations of QO-LRM and LRM (Figure 1d). No significant
differences were observed in the Mn—O and Mn—TM peak
intensities (Figure S3), while QO-LRM exhibited a much
lower intensity in the Ni—TM peak compared to LRM,
indicating the intralayer Ni replacement of Mn in LiMng
superstructure units. Density functional theory (DFT)
calculations suggest that Ni substitution in the LiMng
superstructure increases the oxygen vacancy formation energy
at deep delithiated states (Figure S4 and Table S6).
High-angle annular dark-field scanning transmission electron
microscopy (HAADF-STEM) was conducted to visualize the
lattice structure at the atomic scale. Figure 1f presents the
atomic arrangement of the QO-LRM, with enlarged views of
Li-rich and LiTMO, structures displayed in Figure 1g and
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Figure 1h, respectively. The QO-LRM shows a discretely
distributed dumbbell atomic arrangement, separated by long-
range bright spot columns, with additional bright spot columns
observed between adjacent two-atom dumbbells. Intensity
profiles along selected atomic regions (highlighted in Figure
1g) reveal a clear atomic intensity signal between dumbbell
atoms in the QO-LRM (Figure 1i). Moreover, obvious Li/TM
disordering was observed in QO-LRM, as some atomic
intensities appear within the Li layers of both Li-rich and
LiTMO, structures (Figure 1i). Similar phenomena were also
observed along the [010] direction (Figure SS). High-
resolution energy dispersive spectrometry (EDS) analysis
revealed a greater Ni distribution in the interlayer disordering
regions (Figure S6), suggesting that the lattice disorder is
linked to the Ni distribution. In contrast, LRM exhibited an
ordered layered structure with a long-range two-atom dumb-
bell arrangement, signifying the existence of localized LiMng
superstructure domains in the TM layers (Figure S7). No
obvious interlayered disordering was observed in LRM. In
general, the comprehensive characterizations reveal that the
QO-LRM cathode exhibits a quasi-ordered layered structure
with intra- and interlayer cation redistribution (Figure le),
which is anticipated to reconfigure lattice oxygen environment
and ultimately enhances oxygen redox stability.

Enhanced Electrochemical Performance. Electrochem-
ical tests of LRM and QO-LRM cathodes were performed
galvanostatically within the voltage range of 2—4.65 V. As
shown in Figure 2a, QO-LRM exhibits an initial charge
capacity of 194 mAh ¢! and a much higher discharge capacity
of 262 mAh g~ ' at 0.1C (1C = 250 mAh g ), attributing to its
Li-deficient nature. Figure 2b presents the results of dQ/dV
plots during the first three cycles, which provide insights into
the redox mechanism. A high-intensity peak during the first
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charge can be assigned to the initial activation process of the
Li-rich structure. A broad reductive hump at 3.6—4.5 V is
observed, which results from the partial overlap of cationic
Ni>*/** and anionic oxygen redox. In comparison, the LRM
delivers a lower discharge capacity of 213 mAh g™ (Figure
S8a). The rate capability was further evaluated from 0.1 to SC.
QO-LRM exhibits higher capacities of 237 mAh g™ at 0.5C
and 171 mAh ¢! at SC (Figure 2c), compared to 207 and 113
mAh g™ for LRM (Figure S8b). Regarding long-term cycling
performance, QO-LRM demonstrates superior capacity and
average voltage stability, as expected, achieving 99% capacity
retention and 98% voltage retention (voltage decay of 0.46 mV
per cycle) after 100 cycles at 0.2C (Figure 2d,e and Figure S9).
This performance is notably superior to that of LRM, which
shows 80% capacity retention and 90% voltage retention
(voltage decay of 3.71 mV per cycle, Figure S10a—c). These
results are confirmed by the corresponding charge—discharge
profiles and dQ/dV curves of the QO-LRM (Figure 2f and
Figure S11) and LRM cathodes (Figure S10d,e). Overall, QO-
LRM shows superior electrochemical stability and rate
capability compared to prevalence Li-rich cathodes, Co-free
LRM, and Co-containing Li;,Mngs,Nig;3C00130, (LRM-
NMC, Figures S12 and S13), owing to the enhanced oxygen
redox stability arising from the designed quasi-ordered
structure.

Quasi-Ordered Design Enables Reversible Structural
Evolution and Oxygen Redox Reactions. To unveil the
lattice structure evolution of QO-LRM upon cycling, in situ
XRD measurements were performed during the initial two
cycles. As shown in Figure 3a, the (003) peak of QO-LRM
continuously shifts to higher angles during the first charge and
to lower angles during discharge, corresponding to lattice
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Figure 3. Structural and chemical state evolution of QO-LRM during
cycling. (a) In situ XRD patterns showing variations in the (003) and
(101) Bragg peaks, along with the refined lattice parameter changes
for the QO-LRM cathode during the first two cycles. (b) In situ
XANES spectra of Ni K and Mn K-edges for QO-LRM.

shrinkage upon charging and lattice expansion during discharge
along the c-axis, while the changes along the a-axis demonstrate
an opposite trend. These abnormal structural changes are
associated with the hybridized cationic—anionic redox
behaviors in the quasi-ordered structure. Remarkably, QO-
LRM maintains its original lattice structure after the initial
activation, exhibiting a similar structural evolution in the
second cycle as in the first cycle, which highlights its
exceptional stability in both lattice structure and chemistry.
This is distinguishing from conventional Li-rich cathodes,
which show inverse lattice parameter changes during the initial
charge process and remain nearly unchanged beyond 4.5 V
with the participation of oxygen oxidation (Figure S14).
Additionally, the LRM presents significantly different peak
shifts in subsequent cycles compared to the first cycle,
indicating that the original LRM transforms into a new
structure after initial activation and undergoes continuous
lattice degradation during further cycling.

To elucidate the charge compensation mechanisms in the
QO-LRM cathode, in situ X-ray absorption near edge
spectroscopy (XANES) was used to track the chemical state
variations of TMs during the charge and discharge processes.
As shown in Figure 3b, QO-LRM shows a positive shift of the
Ni K-edge, implying Ni oxidation as Li" extraction. No
significant Ni K-edge shift is observed upon charging above 4.1
V, indicating that oxygen redox participation occurs. After
discharging below 3.3 V, the negligible shift in the Ni K-edge
suggests that the low voltage capacity in QO-LRM
predominantly arises from Mn*/3* redox reactions during
discharge. For LRM, the Ni edge shift becomes much slower
when charged above 4.5 V, which can be ascribed to the
involvement of oxygen oxidation reactions in charge
compensation at this stage (Figure S15). Regarding Mn, slight
edge changes are detected due to local structural variations, as
Mn is nearly in the +4 valence state in the pristine state and
cannot be further oxidized.

Given the critical role of oxygen redox reactions in the
charge compensation mechanism, mapping of resonant
inelastic X-ray scattering (mRIXS) was employed as a sensitive
and reliable method to probe oxygen oxidation states and
investigate oxygen chemistry. As presented in Figure 4a and
Figure S16, the broad feature around 525.5 eV in emission
energy corresponds to O>” states in the pristine LRM. Upon
charging to 4.5 and 4.6 V, new features emerge at excitation
and emission energies around 531 and 524 eV, as well as the
features near the elastic line at 531 eV excitation energy in
LRM (indicated by arrows). These features indicate the
formation of O, dimers,” reflecting the oxidation of lattice
oxygen from the —2 state to a higher valence state. Here, we
use the term ‘oxidized O’ to specifically refer to lattice oxygen
that has undergone oxidation, without implying a defined
molecular structure or bonding configuration. In QO-LRM,
the oxidized O signal is observed at both 4.4 and 4.6 V (Figure
4b), confirming that oxygen redox is activated at lower voltages
and is coupled with cationic redox processes, facilitated by the
special quasi-ordered structural configurations. Figure 4c,e
presents the soft X-ray absorption spectroscopy (sXAS) spectra
of O K-edge in the total fluorescence yield (TFY) mode for
LRM and QO-LRM cathodes at various charge states. The pre-
edge peaks below 534 eV correspond to the transitions from
occupied O 1s orbitals to unoccupied hybridized TM 3d and O
2p orbitals, while the broad peaks above 534 eV are attributed
to the transitions to hybridized states TM 4sp and O 2p
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Figure 4. Oxygen anion redox behavior of QO-LRM. O—K mRIXS images of LRM (a) and QO-LRM (b) at OCV, 4.4 V, and 4.6 V, with arrows
highlighting features associated with O, dimer formation, reflecting the oxidation of lattice oxygen. O—K sXAS spectra of LRM (c) and QO-LRM
(e) at OCV, 4.4V, 4.5V, 4.6 V, and 4.65 V. The arrows highlight the increase in integrated intensity of the sXAS profiles. In situ Raman and DEMS

measurements for LRM (d) and QO-LRM ().

orbitals. In QO-LRM, the integrated intensity of the pre-edge
peaks increases progressively from OCV to 4.4, 4.5, 4.6, and
4.65 V, corresponding to an increasing density of the oxidized
O states.””'

To further investigate the real-time lattice oxygen evolution,
we conducted in situ shell-isolated nanoparticle-enhanced
Raman spectroscopy (SHINES). In Figure 4d, new peaks at
around 830 and 1120 cm™" appear in LRM when charged to
approximately 4.5 V, indicating the formation of peroxo
(0,*7)- and superoxo (O, )-like species with an extended O—
O distance.”> In contrast, no detectable signals of either an
0, or an O, -like species are observed in QO-LRM until the
charging voltage exceeds 4.6 V (Figure 4f). This delayed
appearance, despite clear oxidized O signals in mRIXS at 4.4 V,
signifies that O~ is initially oxidized without the immediate
formation of 0,”7/0, -like species, while the subsequent
generation of O,>/0, -like species is significantly delayed by
the quasi-ordered design. The unstable lattice oxygen oxidized
products, such as O,”"- and O, -like species, are prone to
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transform into O, gas. In situ differential electrochemical mass
spectrometry (DEMS) was performed to detect the gas
evolution during cycling. The O, release can be related to
the lattice oxygen loss, while CO, is primarily attributed to the
decomposition of the carbonated electrolyte. We refer to the
region starting from the oxygen redox activation before O, gas
release as the reversible O redox band, as highlighted in Figure
4df. It is observed that the release of the O, signal is
significantly delayed in QO-LRM and is released in a smaller
amount compared to LRM, further confirming the inhibition
of irreversible lattice oxygen loss. The capacity contribution
from reversible redox in QO-LRM is more than three times
higher than that in conventional LRM. This elevation of the
oxidation state limit provides vast potential for fully utilizing
reversible anionic redox reactions, benefiting from the unique
quasi-ordered structural design, which effectively optimizes the
configuration of lattice oxygen, thereby preventing its
undesired transformation into unstable 0,”7/0, -like species
and greatly improving structural stability.
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Enhanced Structural Stability. To explore the intricate
connection between oxygen redox chemistry and structural
stability, the HAADF-STEM technique was adopted to
conduct structural examination at nano and atomic scales
after 100 cycles. Figure Sa presents the nanovoid formation
across the entire particles in the cycled LRM cathode. Atomic-
resolution STEM imaging further verifies a transformation of
the surface structure into a rock-salt phase (Figure Sb). By
coupling HAADF-STEM imaging with electron energy loss
spectroscopy (EELS) analysis, we confirm that the nanovoids
arise due to irreversible lattice oxygen loss, as evidenced by the
depressed oxygen peak and Mn reduction in both the surface
and bulk nanovoid regions (Figure Sc,gh). These irreversible
oxygen losses and phase transitions greatly contribute to the
capacity and voltage decay in LRM cathodes. In contrast, the
cycled QO-LRM cathode maintains its morphological
integrity, showing no noticeable nanovoid formation (Figure
5d). Remarkably, clear layered lattice fringes with intralayer
dumbbell configurations are still visible in the bulk, even after
extended cycling (Figure Se), indicating minimal TM
migration and negligible irreversible structural degradation.
EELS results reveal a relatively uniform distribution of the
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polarized O and Mn chemical states in the bulk (Figure 5£ij),
with lower polarized O intensity and Mn valence states at the
surface attributed to the inevitable interfacial side reactions.
These findings demonstrate that the unique quasi-ordered
structure design of QO-LRM provides an exceptionally stable
lattice framework, which correlates with highly reversible
oxygen redox chemistry and contributes to the impressive
cycling performance.

B CONCLUSIONS

The introduction of anionic redox reactions endows Li-rich
cathode systems with ultrahigh capacity, but this comes at the
cost of rapid structural degradation and electrochemical decay
due to lattice oxygen instability. This has reinforced the long-
standing belief that oxidized lattice oxygen is thermodynami-
cally unstable and inherently correlates with poor electro-
chemical reversibility, blocking the utilization of oxygen redox
chemistry. Excitedly, in this work, we reveal that the
reversibility of oxygen redox is not directly related to the
extent of lattice oxygen oxidation; instead, it is highly
associated with lattice configurations. By developing a quasi-
ordered structural design strategy, we effectively stabilize lattice
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oxidized O species and inhibit the formation of 0,>"/0, -like
species that trigger irreversible lattice O loss. This strategy
significantly elevates the upper utilization limit of reversible
oxygen redox, enabling the simultaneous achievement of high
capacity with virtually no voltage decay—demonstrated by
98% average voltage retention over 100 cycles with only 0.46
mV voltage decay per cycle, which is approximately an order of
magnitude lower than that observed in conventional Li-rich
cathodes. These findings represent a breakthrough in under-
standing and enhancing the stability of anionic redox
chemistry, paving the way for the development of cathodes
with higher energy density and long lifespan.
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