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% Check for updates Understanding active phases across interfaces, interphases, and even within

the bulk under varying external conditions and environmental species is cri-
tical for advancing heterogeneous catalysis. Describing these phases through
computational models faces the challenges in the generation and calculation
of a vast array of atomic configurations. Here, we present a framework for the
automatic and efficient exploration of active phases. This approach utilizes a
topology-based algorithm leveraging persistent homology to systematically
sample configurations across diverse coordination environments and material
morphologies. Simultaneously, efficient machine learning force fields enable
rapid computations. We demonstrate the effectiveness of this framework in
two systems: hydrogen absorption in Pd, where hydrogen penetrates sub-
surface layers and the bulk, inducing a “hex” reconstruction critical for CO,
electroreduction, explored through 50,000 sampled configurations; and the
oxidation dynamics of Pt clusters, where oxygen incorporation renders the
clusters less active during oxygen reduction reactions, investigated through
100,000 sampled configurations. In both cases, the predicted active phases
and their impacts on catalytic mechanisms closely align with previous
experimental observations, indicating that the proposed strategy can model
complex catalytic systems and discovery active phases under specific envir-
onmental conditions.

Heterogeneous catalysts are always subjected to specific working
conditions, such as temperature, pH, and electrode potential, and
interact with environmental species™. This can result in changes ran-
ging from a single atomic layer to several atomic layers, and may even
lead to alterations in bulk composition (Fig. 1) e.g., the coverage effect
of adsorbates on the surface®”, the subsurface incorporation of O, H,
and other heteroatoms®°, and the degradation process"™. The

resulting surface states and overall structures of catalysts under spe-
cific conditions are considered the active phases in catalytic
reactions'*'®. They are typically dynamic and may undergo transitions
as conditions change, which are intimately tied to the mechanistic
insights and material design within this field".

The determination of active phase under ambient condition is,
therefore, the very fundamental issue of heterocatalysis and essentially
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Fig. 1| The overview of the persistent homology-based sampling algorithm
(PH-SA) and overall framework for active phase discovery. a The PH-SA involves
decomposing material structures into small atomic aggregates, followed using
persistent homology to identify the potential interaction sites within each unit. By
combining the sites identified by all the aggregates, the potential active sites for

species within the entire material structure can be obtained. b After identifying the
sites, a combinatorial enumeration is used to generate a set of structures. ¢ The
machine learning force field (MLFF) is trained by transfer learning to enhance
computational efficiency. d The Pourbaix diagram under specific external condi-
tions is constructed to facilitate catalytic mechanism analysis.

involves identifying the distribution of environmental species.
Experimental methods for investigating the active phase are expensive
and intricate, rendering it challenging to cover a broad range of
experimental conditions*'®. To obtain atomic-scale insights into
operando active phases, the field frequently relies on computational
simulations. A basic approach involves using chemical intuition to
hypothesize possible microscopic structures and employing density
functional theory (DFT) to perform energetic calculations*, con-
structing phase diagrams under specific reaction environments.
Nevertheless, human intuition cannot ensure adequate exploration of
the phase space to identify the most thermodynamically favorable
structures. Furthermore, the rapid escalation in the number of con-
figurations to be explored will render DFT calculations computation-
ally prohibitive. Machine learning force fields (MLFF), while
maintaining accuracy, are significantly faster than DFT calculations and
thus are increasingly becoming the preferred tools for exploring active
phases®>” . However, MLFF requires precise fitting of the potential
energy surface, which necessitates exploring enough possible
configurations®?. In this regard, developing efficient sampling algo-
rithms that do not rely on chemical intuition has become a top priority,
which not only facilitates the exploration of more potential config-
urations but also enables their rapid evaluation via effectively train-
ing MLFF.

Global optimization-based approaches such as basin hopping
evolutionary algorithms® and random structure search® offer prin-
cipled approaches to comprehensively navigating the ambiguity of
active phase. However, these methods usually rely on skillful para-
meter adjustments and predefined conditions, and face challenges in
exploring the entire configuration space and dealing with amorphous

28-31
’

structures. The graph theory-based algorithms®**’, which can enu-

merate configurations for a specific adsorbate coverage on the surface
with graph isomorphism algorithms, even on an asymmetric one.
Nevertheless, these methods can only study the adsorbate coverage
effect on the surface because the graph representation is insensitive to
three-dimensional information, making it unable to consider subsur-
face and bulk structure sampling. Other geometric-based methods***’
also have been developed for determining surface adsorption sites but
still face difficulties when dealing with non-uniform materials or
embedding sites in subsurface.

Topology, independent of metrics or coordinates, presents a
novel approach that could potentially offer a comprehensive traversal
of structural complexity. Persistent homology, an emerging technique
in the field of topological data analysis, bridges the topology and real
geometry by capturing geometric structures over various spatial scales
through filtration and persistence*’. Through embedding geometric
information into topological invariants, which are the properties of
topological spaces that remain unchanged under specific continuous
deformations, it allows the monitoring of the “birth,” “death,” and
“persistence” of isolated components, loops, and cavities across all
geometric scales using topological measurements. Topological per-
sistence is usually represented by persistent barcodes, where different
horizontal line segments or bars denote homology generators*. Per-
sistent homology has been successfully employed to the feature
representation for machine learning*>*>, molecular science****, mate-
rials science**™>, and computational biology**”. The successful appli-
cation motivates us to explore its potential as a sampling algorithm
due to its capability of characterizing material structures
multidimensionally.
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Fig. 2 | The illustration of persistent homology-based sampling algorithm (PH-
SA). The determination of possible interactions sites by PH-SA with (a) regular
octahedron and (b) deformed octahedron unit structure as examples. The blue
balls are the atoms and red balls indicate the possible interaction sites. The
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barcodes of By, B; and B, record the persistent homology process. Each bar of 8,
corresponds to an isolated atom (point). The f3; corresponds to the existence of
loop. The f3, corresponds to the existence of cavity.

In this work, we introduce a topology-based automatic active
phase exploration framework, enabling the thorough configuration
sampling and efficient computation via MLFF. The core of this frame-
work is a sampling algorithm (PH-SA) in which the persistent homology
analysis is leveraged to detect the possible adsorption/embedding
sites in space via a bottom-up approach. The PH-SA enables the
exploration of interactions between surface, subsurface and even bulk
phases with active species, without being limited by morphology and
thus can be applied to periodical and amorphous structures. MLFF are
then trained through transfer learning to enable rapid structural
optimization of sampled configurations. Based on the energetic
information, Pourbaix diagram is constructed to describe the response
of active phase to external environmental conditions. We validated the
effectiveness of the framework with two examples: the formation of Pd
hydrides with slab models and the oxidation of Pt clusters in electro-
chemical conditions. The structure evolution process of these two
systems was elucidated by screening 50,000 and 100,000 possible
configurations, respectively. The predicted phase diagrams with
varying external potentials and their intricate roles in shaping the
mechanisms of CO, electroreduction and oxygen reduction reaction
were discussed, demonstrating close alignment with experimental
observations. Our algorithm can be easily applied to other hetero-
geneous catalytic structures of interest and pave the way for the rea-
lization of automatic active phase analysis under realistic conditions.

Results

The overview of PH-SA and the overall framework

The Fig. 1is the overview of the topology-based automatic active phase
exploration framework. In order to determine the active phase of the
catalysts, the first step is to identify the sites in the material that can
accommodate active species, which can range from the surface to the

bulk. We leverage the persistent homology, an advanced algorithm in
topology data analysis, to achieve this goal, namely PH-SA algorithm.
The technical details of PH-SA are presented in the method section.
Here, we briefly introduce its logic (Fig. 1a). Initially, we decompose a
material structure into combinations of atom aggregates, consisting of
two, three, and more atoms, with the underlying physical implication
that active species typically interact with only a few surrounding
atoms. The geometric characteristics of the atom aggregate (points
cloud) can be capture over various spatial scales through a manip-
ulation, namely filtration. Specifically, each point synchronously
expands in the space with the filtration parameters being atomic dia-
meter. The filtration process will generate the persistent barcodes with
the evolution of different Betti numbers. For a given structure aggre-
gate, the number of independent components, loops and cavities are
topological invariants and they are referred to as So, B, and fs,
respectively. The “birth,” “death,” and “persistence” of fo, 1, and 3, are
recorded in the persistent barcodes. The “death” of the Betti numbers
corresponds to a contact mode of spheres centered on points, and this
contact point may represent a possible local adsorption or embedding
site where active species may interact. This is because its approxi-
mately equidistant positioning relative to surrounding atoms effec-
tively minimizes repulsive interactions, facilitating the formation of
energetically favorable bonding configurations. The geometric coor-
dinates of the contact point can be readily determined through fitting
constrained by the topological information of the death points. By
iterating over atom aggregates of varying sizes within the material
structure, one can automatically identify plausible sites capable of
accommodating active species.

The Fig. 2 illustrates the interaction sites determination of an
octahedron, which can represent a typical local unit in the FCC crystal
structure. The octahedron is firstly decomposed to the possible atom
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aggregates with two, three until six atoms. For each aggregate, per-
sistent homology analysis is performed. Taking the six atoms one as an
example (Fig. 2a), the behaviors of By, B; and j3, are separately plotted
with the horizontal axis being the filtration parameter € (atomic dia-
meter) from top to bottom. In the early stage, there are six bars in the
Bo subfigure, indicating the six isolated atoms. When the filtration
parameter € reaches ~2.5 A, each ball, growing from the initially iso-
lated atoms, overlaps with its closest four balls. Consequently, six bars
of Bo turn into one bar in 3, subfigure, representing the emergence of
an independent noncontractible quadrilateral structure (cavity). The
contact point of two ball is actually the bridge site between two
neighboring atoms and can be readily obtain from the record of bar-
codes. When the filtration parameter reaches ~3.75 A, the 8, bar dis-
appears, leaving only a o bar persistent due to six atoms fully contact
and fuse into one large sphere. From this changing moment, the 6-fold
site in the center can then be determined. In real material structures,
sites are prone to deformation due to dynamic effects. In Fig. 2b, we
use a deformed octahedron to illustrate the versatility of the PH-SA
method. During the evolution of the barcode, the B, disappears suc-
cessively, which is significantly different from the simultaneous dis-
appearance of the undeformed octahedron. The bridge sites can still
be derived from the position where each S, disappears, and the dis-
appearance of the 3, also corresponds to the possible site in the cen-
ter. Unlike the regular octahedron, the deformed octahedron exhibits
1 barcodes as the points expand, indicating the presence of loop
microstructures at certain stages during the filtration process. Owing
to its abstract nature, the filtration method can be applied to atom
aggerates with any morphology. The analysis results of the square
planar and its distorted derivative, which are simpler with only o and
1 barcodes but represent a typical local structure on the FCC (100)
surface, are shown in Figure S1. Notably, while each Betti number’s
death point can correspond to a potential active site, in practice, we
focus solely on the last death point (excluding the persistent So) for
each aggregate to avoid redundant computations. This shift stems
from our methodology, which initiates with two atoms and progres-
sively applies persistent homology to larger aggregates. Consequently,
the structural information from earlier death points of larger aggre-
gates is generally already captured in smaller aggregates with fewer
atoms. Using the octahedral structure as an example (Fig. 2a), the
bridge sites corresponding to the o death points were already iden-
tified during the two-atom combination analysis. Instead of perform-
ing persistent homology directly on the entire structure, we adopt this
bottom-up approach to avoid interactions within the whole system
that might obscure topological features in the barcodes and the loss of
corresponding interaction sites (Figure S2). By doing so, this strategy
can achieve a balance between computational efficiency and identi-
fying as many potential active sites as possible.

After the determination of all the adsorption/embedding sites of
the material structure with persistent homology, we can then sample
the possible configurations of the active phase (Fig. 1b). For the active
species embedded in the bulk lattice, their initial positions can be
directly placed on the identified interaction sites. For the interaction
sites on the surface, the active species will adopt an adsorbed state
with their positions determined by the hard sphere model. The close
contacts of atoms in this enumeration process corresponding to very
high repulsive energies will be rejected based on hard-sphere cut-offs
based on their summation of covalent radius (Fig. 2). Graph iso-
morphism algorithm is applied to eliminate structures with the same
graph connectivity to avoid repeated enumeration®. Following the
construction of structure ensembles, the MLFF is established to
accelerate the structure optimization by transfer learning based on the
DPA pre-trained model**(Fig. 1c). Lastly, the energy variation trends
and phase diagrams connected to external environmental conditions
can be readily obtained to analyze the physicochemical properties of
the system and facilitate comparisons with experimental results

(Fig. 1d). The overall procedure is also summarized by flowchart in
Figure S3.

Simulating complex heterogeneous catalytic systems with the
framework

To demonstrate the general applicability of the PH-SA method for
diverse material morphologies, we selected two of the most commonly
used catalyst structural models, slab and cluster, for illustration®. The
periodic slab model is widely employed in theoretical studies of het-
erogeneous catalysis to examine the properties of specific exposed
surfaces of catalysts®*®", Its distinguishing feature lies in the fixed lat-
tice parameters, which prevent deformation of the slab in the xy-plane
during interactions with environmental species. The cluster model is
another commonly used atomic structure, characterized by its amor-
phous nature®*®*, The interaction of the cluster with environmental
species can induce structural deformation, which in turn increases the
complexity of subsequent interactions with the surrounding species.
Below, we will demonstrate the PH-SA and the overall framework in
two specific systems, followed by the detailed discussion of the results.

The PdH, system with slab model

The formation of palladium hydride is taken as the first example to
demonstrate the PH-SA and the overall framework. The research on
metal hydrides has attracted widespread attentions due to their
potential applications in catalysis, energy storage, superconductivity
and so on®*®, In an electrochemical environment, Pd exhibits a
remarkable tendency to intercalate hydrogen, leading to the formation
of active PdH, phase that extends seamlessly from the surface to
several atomic layers beneath(Fig. 3a), which can significantly affect
the performance of electrocatalytic reactions'*®**’,

The 4 x 4 Pd (100) surface has been chosen as the model system to
investigate the hydrogen phase diagram of Pd (Fig. 3a). Initially, the
persistent homology is applied to Pd (100). By using the PH-SA, we
identified a total of 1064 possible hydrogen adsorption/intercalation
sites. The large number of sites indicates that the configurational space
for hydrogen adsorption/insertion is vast. Subsequently, possible
adsorption configurations were enumerated across ten gradients with
H:Pd ratios of 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1, with 5000
configurations for each gradient. We then extracted 50 structures each
of the H:Pd ratio from 0.1 to 1, and subjected them to structure
relaxation by DFT calculations. These structural data were integrated
with the pre-trained DPA model*® to construct a machine learning force
field for PdH, systems. The fine-tuned machine learning force field
achieved an energy accuracy of 0.001 eV per atom and a force accu-
racy of 0.045 eV A (Fig. 3b, c, more details in Methods).

We leveraged the constructed machine learning force field to
optimize the structures of all 50,000 configurations and calculated the
average hydrogen adsorption energy. Interestingly, the lowest
adsorption energy of each concentration gradient does not vary
monotonically, exhibiting a trend of first rising (H:Pd = 0.1- 0.4), then
falling(H:Pd = 0.5), and finally rising again(H:Pd = 0.6 —1) (Figure S4).
We further calculated the mixing energy of PdH, using energy of pure
Pd (100) and the most stable configuration of PdH; as references. It can
be observed that at PdHg 5, the structure indeed possesses the mini-
mum mixing energy (Fig. 4a). At low hydrogen concentrations, the
atoms preferentially occupy the surface sites. As hydrogens begin to
infiltrate the bulk, they primarily settle between the second and third
Pd layers rather than the sublayer, which can alleviate the atomic
repulsion between internal and interfacial hydrogens and foster a
smoother integration process of adsorption energy (Fig. 4b). Inter-
estingly, with the increase of hydrogen concentration, the surface of
Pd (100) gradually changes from the 4-fold hollow sites arrangement
to the mixed arrangement of 3-fold hollow sites, similar to the atomic
arrangement of the (111) crystal plane, and 4-fold hollow sites with the
coordination number of surface Pd increasing at around H: Pd =0.5
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Fig. 3| The PdH, system with different H concentrations (x=0, 0.1, 0.2, 0.3, 0.4,
0.5, 0.6, 0.7, 0.8, 0.9, and 1). a Schematic diagram of the PdH, atomic model.

Comparison between (b) energies and (c) forces predicted by the machine learning
force field (MLFF) model and those calculated by density functional theory (DFT).

The Eper and Fper are energy and force calculated by DFT. The Eyy pr and Fyygr are
energy and force calculated by MLFF. Root Mean Square Error (RMSE) and R-
squared (R?) are used as performance evaluation metrics for MLFF training. Color
code: silver: Pd; yellow: H.

(Fig. 4c and Figure S5). The slight enhancement in adsorption strength
at this juncture may stem from the inherent stability of the (111) crystal
plane over the (100) crystal plane, offsetting the instability arising from
interatomic repulsion. Nevertheless, as the H concentration further
surges, the repulsive forces among hydrogen atoms inevitably
undermine the adsorption intensity. When the H: Pd ratio reaches 1,
the surface is completely converted into 3-fold hollow sites (Fig. 4c and
Figure S5). This phenomenon is widely reported as the “hex” recon-
struction in the FCC (100) crystal plane’®”, and hydrogen can be a
driving force in the electrochemical environment according to our
results.

The formation of PdH, active phases is believed to significantly
promote the electroreduction of CO, to CO*°. We selected the
configurations with the lowest adsorption energy of hydrogen from
each gradient to perform free energy calculations, aiming to investi-
gate the phase diagram of the PdH, system under external pH and
potential conditions. At pH = 7.3, Pd tends to accommodate 60%
hydrogen at -0.1V vs RHE, which is consistent with experimental
findings in CO, electroreduction condition(Fig. 4d and Figure S6)%.
We have calculated the effects of different hydrogen concentrations
on the adsorption energies of *COOH and *CO, observing an overall
decrease in the adsorption energies of both *COOH and *CO as the H
concentration rises (Fig. 4e). This trend can be attributed to hydrogen
drawing away some electrons, thereby diminishing Pd’s capability to
donate electrons to carbon-containing species and to bind them
strongly. Since Pd is a catalyst that is susceptible to CO poisoning,
weakening the adsorption of CO is expected to effectively enhance the
reduction performance of CO,, as evidenced by the free energy dia-
gram calculations (Fig. 4f), exemplified by the case of PdHg .

The PtO, system with cluster model

Platinum nanoparticles (Pt NPs) hold paramount significance across a
broad spectrum of electrocatalytic processes, encompassing the oxi-
dation of small molecules™, plasma-assisted catalysis”, the oxygen
evolution reaction’®, and the oxygen reduction reaction””’®, In elec-
trochemical environment, the Pt NPs are performed under oxygen-rich
conditions, leading to the platinum surface and interior can be oxi-
dized, which can significantly impact catalytic activity under ambient
conditions”. The evolution mechanism of Pt NPs oxidation process
entails sufficient sampling and analysis of Pt-O active phases.

The icosahedral Ptss cluster with diameter at ~-1nm has been
chosen as the model system to investigate the oxidization of Pt NPs
(Fig. 5a). At begins, the persistent homology is applied to Ptss. From the
evolution of barcodes, we identified a total of 392 possible oxygen
adsorption/intercalation sites. Given the amorphous nature of Pt NPs,

we enumerated 10,000 possible PtO, (x = 0.1 - 1 with the increasement
of 0.1) configurations per gradient level, evaluated their energies via
MLFF calculations, and selected the lowest 5% as seeds for subsequent
gradient iterations. Persistent homology was used to pinpoint updated
interaction sites in this process. This operation effectively accounts for
the deformation of Pt NPs induced by O adsorption/intercalation,
thereby providing a more realistic representation of the gradual oxi-
dation process of Pt NPs under electrochemical conditions. It can be
observed that as oxygens are inserted into the Pt cluster, the resulting
PtO, obviously generates more potential interaction sites (Fig. 5b) to
accommodate oxygen atoms due to the significant change and
expansion in the shape of the cluster, as we will discuss below. The
utilization of persistent homology to determine the updated interac-
tion sites further enhances the accuracy and robustness of the simu-
lations, as it allows for a dynamic tracking of structural changes and
interactions during the oxidation process. Ab-initio molecular
dynamics were performed to generate data for fine-tuning the DPA
pre-trained model (details in method sections). The fine-tuned MLFF
achieves an energy accuracy of 0.008 eV per atom and a force accu-
racy of 0.21eV A (Fig. 5¢, d, more details in Methods).

The overall change of oxygen adsorption energy shows a con-
tinuous increase with the increase of oxygen concentration, with a
relatively drastic change at the beginning and then a relatively gentle
change (Fig. 6a). Initially, oxygens tend to adsorb on the surface. As the
increase of oxygen content, oxygen begins to embed into the interior
of Pt particles with O: Pd=0.4. These internal oxygen atoms directly
emerge near the mass centroid rather than in the vicinity of the surface
region (Fig. 6b). This phenomenon is analogous to the PdH, system
and is readily comprehensible from a thermodynamic perspective. The
mass centroid is farthest from the surface, thus can effectively avoid
the energy penalty associated with the increasing O-O interatomic
repulsion. Concurrently, the particles undergo a remarkable volu-
metric expansion, embracing the emergence of Pt-O components
within their bulk (Figure S7). This expansion may also explain why the
surge in adsorption energy plateaus at higher oxygen levels. With the
escalation of oxygen concentration, the augmentation of Pt-O coor-
dination number is obvious. Ptss attains Pt sites with 4-6 oxygen
coordination, akin to the structural motifs found in Pt304 or PtO,, at
60% oxygen content (Fig. 6¢). Since higher oxidation states of Pt
generally correspond to poorer oxygen reduction reaction
performance®**, it can be predicted that the emergence of such basic
units will seriously damage the catalytic activity of clusters. We further
constructed the Pourbaix diagram to study the phase transition pro-
cess under actual electrochemical conditions by correcting the zero-
point energy and entropy of the lowest energy configuration at each
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Fig. 4 | Results analysis of the PdH,. system with different H concentrations
(x=0,0.1,0.2,0.3,0.4,0.5,0.6,0.7, 0.8, 0.9, and 1). a The mixing energy of PdH,
with different H concentrations. The mixing energy of each structure is calculated
by referencing to the energy of the Pd slab and PdH; with the lowest adsorption
energy. Therefore, only one sample in H concentrations of 0 and 1, while each other
concentration contains 5000 samples. b The occupation ratio of H in different
layers of Pd along with the total H concentration. The Pd slab consists of four layers
of Pd atoms, providing five possible adsorption/embedding layers for H. The black,
red, and blue lines represent H adsorption on the top and bottom surfaces of Pd,
the second and fourth adsorption layers, and the third adsorption layer, respec-
tively. Due to the symmetry of the slab model, the black and red lines correspond to
two equivalent layers. ¢ The average Pd-Pd coordination numbers of surface Pd
atoms, calculated for the lowest energy configurations at each concentration

Total concentration of hydrogen

gradient. The structures of pure Pd, PdHg 5, and PdH; are shown. The red dot, error
bars and violin plot show the average coordination number, the standard deviation
of the average coordination number and the distribution of different Pd atom
coordination numbers, respectively. d The concentration of hydrogen in Pd as a
function of potentials. The dashed line shows the potential at —0.1V vs RHE, cor-
responding to the PdH ¢ structure. e The adsorption energies of *COOH and *CO
on the lowest energy PdH, structures at different hydrogen concentrations. f The
free energy diagram of CO, reduction to CO with pure Pd and PdHg 6. The insets
show the *CO adsorption configurations on Pd and PdHg ¢ substrates. The free
energy curves are obtained using the computational hydrogen electrode model.
The hydrogen concentration in (a-e) is expressed as the unitless ratio of the
number of hydrogen atoms to the number of Pd atoms. Color code: silver: Pd;
yellow: H; red: O; black: C.

gradient (Fig. 6d). The findings reveal that, under typical acidic oxygen
reduction reaction conditions (pH =1), Ptss attains full oxygen incor-
poration at approximately 0.6 V, implying diminished catalytic activ-
ity, given that oxygen reduction reaction typically thrives at elevated
potentials, such as 0.9 V. This does align with experimental results,
which suggested that ultra-small Pt clusters (<2 nm) impede the oxy-
gen reduction reaction®.It is noted that we focused only on thermo-
dynamic stability and kinetic processes can be considered for a
complete picture of oxygen embedding.

Discussion

The core concept underlying our persistent homology-driven sam-
pling approach rests on the premise that the interplay between active
species and material structure is intimately tied to a select few neigh-
boring atoms. As such, we embark on a bottom-up strategy to perform
persistent homology analysis on microscopic structural units. From a
mathematical perspective, the “barcode death” point represents a
critical spatial location associated with the scale at which a topological
feature, such as a ring or void, disappears during the thickening pro-
cess. This point reflects a balance in distances to surrounding points,
capturing the intrinsic geometry of the structure. This methodical
process offers a robust and intuitive approach that not only elucidates

the spatial arrangements of these motifs but also elegantly determines
the plausible interaction sites. Owing to the abstract mathematical
nature of the persistent homology method, it can analyze materials of
any morphology. Upon the generation of potential interaction sites,
one can easily generate a myriad of potential adsorption/intercalation
configurations, guided solely by the basic constraint of hard-sphere
radii. This strategy is advantageous for the traversal of local minima
and the exploration of the global potential energy landscape, while
circumventing the daunting task of navigating the vast, Cartesian-
based grand canonical sampling space. Furthermore, the entire pro-
cess can be highly automated, requiring minimal human intervention
and manipulation.

We compared the PH-SA with the classical basin hopping
algorithm>*2°%* for the PdH, and PtO, systems. The generally lower
average adsorption energy achieved by PH-SA highlights its superior
ability to identify more stable structures (Figures S8, S9). Fundamen-
tally, the PH-SA and the basin hopping method represent two distinct
technical approaches. The PH-SA excels in rapidly identifying and
enumerating potential interaction sites across materials with diverse
morphologies, ensuring that the identified sites are geometrically
plausible. This approach allows for an initial exploration of config-
uration distributions, followed by the selective refinement of
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Fig. 5| The PtO, system with different O concentrations (x=0, 0.1, 0.2, 0.3, 0.4,
0.5,0.6,0.7, 0.8, 0.9, and 1). a Schematic diagram of the PtO, atomic model. b The
potential interaction sites for oxygen against with the oxygen concentration in Pt
cluster. The oxygen concentration is expressed as the unitless ratio of the number
of oxygen atoms to the number of Pt atoms. Comparison between (c) energies and

(d) forces predicted by the machine learning force field (MLFF) model and those
calculated by density functional theory (DFT). The Epgr and Fper are energy and
force calculated by DFT. The Eyygr and Fyyrr are energy and force calculated by
MLFF. Root mean square error (RMSE) and R-squared (R?) are used as performance
evaluation metrics for MLFF training. Color code: silver: Pt; red: O.

configurations of interest through structural optimization. In contrast,
the basin hopping method integrates configuration generation with
structural optimization in a sequential manner. New configurations are
generated by applying perturbations to the current optimized con-
figurations, requiring each step to undergo optimization before pro-
ceeding. Without the optimization step, the reliance on random
perturbations would easily generate invalid, high-energy configura-
tions, making the process less efficient and less directed. The differ-
ence in logic also endows the PH-SA method with greater potential for
computational efficiency, as verified in the Pd-H and Pt-O systems
(Figure S10). In addition, when considering only the surface adsorption
sites, the number of sites identified by the PH-SA method is consistent
with that determined by previous graph-theory-based methods* in
both systems (Figure S11), thereby demonstrating the robustness of
the PH-SA method.

In complex systems, persistent homology can swiftly identify key
structural features, while basin hopping may necessitate repeated
global structural transformations and numerous iterations to explore
the underlying state space. In this regard, the persistent homology
approach minimizes heuristic bias since it remains largely data-driven,
reducing dependency on initial configurations and optimization
pathways. Furthermore, basin hopping relies heavily on stochastic
processes with less explicit mathematical foundations. Whereas per-
sistent homology is firmly rooted in well-defined mathematical

principles, offering systematic and interpretable insights into struc-
tural arrangements. It is capable of handling complex structures of
arbitrary dimensions and can adapt to amorphous, distorted, and
deformed site distributions.

The primary objective of this work is to demonstrate the feasi-
bility of the persistent homology algorithm for structural sampling of
materials with arbitrary morphologies. The slab model was utilized to
illustrate the scenario where the lattice is fixed, primarily suited for
theoretical simulations in the field of heterocatalysis. Furthermore, the
cluster model was employed to demonstrate cases where material
structures undergo expansion and deformation. The hydrogen
adsorption under reduction environment and oxygen adsorption
under oxidation environment were selected as model process. The two
catalyst structures and reaction process we demonstrated are both
representative, providing strong evidence for the general applicability
of the method. The number of atoms and involved elements in the
adopted models are kept relatively small and simple. Exploring large-
scale systems and multi-species interaction systems, such as the CO
adsorption phase diagram on CuO, in CO, electroreduction®* and
the lithium storage process of SiO, in the electrochemical energy
storages®, two important and ongoing controversial issues in their
respective fields, are also entirely feasible by leveraging the power of
machine-learned force fields (MLFFs). Grand canonical Monte Carlo
(GCMC) can be readily integrated into the overall framework to further
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proportion of Pt atoms with different oxygen coordination numbers as a function
of total oxygen concentration, analyzed for the lowest energy configurations at
each oxygen concentration gradient. d The Pourbaix diagram for the PtO, system.
Each color represents the stable PtO, phase under the given potential and pH
conditions. Notably, PtOg  is not in the figure because its thermodynamic stability
is lower than that of PtO,, and therefore PtOg s tends to directly transition to the
PtO; structure. The oxygen concentration in (a, c) is expressed as the unitless ratio
of the number of oxygen atoms to the number of Pt atoms.

optimize the construction of active phase diagrams®. In fact, in the
PtO, system, our approach of using the top 5% lowest-energy config-
urations from each gradient to generate configurations for the next
gradient like the typical operations in GCMC for enumerating config-
urations, albeit without the employment of the Metropolis criterion.
Lastly, we employed transfer learning to construct the machine
learning force field, given that we mainly focus on the trend analysis of
energy distribution. For more complex multi-element systems and
kinetic analysis, active learning can be integrated with our sampling
algorithm to construct high-accuracy force fields on-the-fly.

In summary, we present a framework for automatic active phase
exploration grounded in topological data analysis, empowering com-
prehensive configuration sampling and facilitating efficient computa-
tions harnessing the power of MLFF in periodical and amorphous
structures. At the heart of this framework lies a sampling algorithm,
PH-SA, which treats the material structure as points cloud and employs
persistent homology analysis to discern potential adsorption/embed-
ding sites through a methodical bottom-up approach. MLFF are then
trained through transfer learning to enable rapid structural optimiza-
tion of sampled configurations. Based on the energetic information,
Pourbaix diagram is constructed to delineate the response of the
active phase to varying external environmental conditions. The for-
mation of Pd hydrides with slab models and the oxidation of Pt clusters
under electrochemical conditions are elucidated and show excellent

agreements with experimental observations in both material recon-
struction and catalytic reaction activity tuning. Our algorithm can be
easily generalized to diverse structures of interest, thereby pioneering
the path towards the realization of automated active phase analysis
under practical, real-world conditions.

Methods

Persistent homology and interaction sites determination
Persistent homology is used to identify potential active sites in atomic
structures. We primarily utilize the filtration process to obtain the
barcodes of atomic aggregates constituting the material structure,
from which filtering parameters are extracted to locate the spatial
coordinates of potential active sites. The mathematical foundation of
persistent homology is provided in the supplementary information.
The implementation of the persistent homology relies on the open-
source package GUDHI*’. Here, we focus on describing the practical
operational process.

Step one: enumerating atomic aggregates within the material
structure. We start by selecting a central atom and constructing atomic
aggregates consisting of two to ten atoms within a 5A radius via
combinatorial enumeration. Each atom in the structure is used as the
central atom in turn. The atomic indices and three-dimensional coor-
dinates of each aggregate are recorded in this process, and duplicates
(aggregates with the same atomic indices) are removed to avoid
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redundancy. The effect of threshold variation on site determination is
tested in S12.

Step two: obtaining filtering parameters of the atomic aggregates.
For each atomic aggregate, persistent homology is applied to generate
persistent barcodes, containing So, B;, and B, with their respective
birth, death, and persistence times. These Betti numbers correspond
to topological invariants of independent components, loops, and
cavities. Intuitively, each death point in the barcode represents a
potential active site in space, as shown in Fig. 2. Here, we focus on the
last death point (excluding the persistent ) for each aggregate, as it
typically marks the disappearance of the largest void or cavity formed
by most of the atoms in the aggregate. In material structures, foreign
atoms (e.g., hydrogen or oxygen) typically occupy these interstitial
sites. Since our calculation begins with pairs of atoms, the structural
information from earlier death points of larger aggregates is generally
already captured in smaller aggregates with fewer atoms. For instance,
the bridge sites on each edge of an octahedron are determined during
the persistent homology analysis of two atoms (Fig. 2). Although this
conclusion has not been rigorously proven, this approach can strike a
balance between computational efficiency and the identification of as
many potential active sites as possible. When performing persistent
homology, it is also necessary to specify the type of complex used. For
atomic aggregates consisting of four or fewer atoms, we employ the
Alpha complex, while for aggregates with more than four atoms, we
utilize the Vietoris-Rips complex. The advantages of this combined
strategy are discussed in Figs. S13, S14.

Step three: determining the three-dimensional coordinates of
potential active sites. We can obtain the filtering parameters of the last
death point from persistent homology, but the corresponding spatial
coordinates of the interaction sites cannot be directly acquired, even
though their positions are intuitive, as illustrated in Fig. 2. This requires
a simple fitting step as presented in Egs. (1) and (2):

min Y wi(lIp; — x| — d)? M
i=1
W=t
! 251 @

Here, p represents the three-dimensional coordinates of each
atom within the atomic aggregate, recorded during enumeration. The
w is the radius weight of different elements composing the atomic
aggregate, r is the radius of each atom, i and j are the atom indices, x
denotes the coordinates of interaction site to be determined, and d is
the filtration parameter derived from the last death point in persistent
homology. The underlying rationale of this formulation is as follows:
the death point in persistent homology reflects the critical scale at
which a ring and/or cavity is filled during the thickening process. This
corresponding filtration parameter d can be interpreted as the max-
imum distance that the “expanding” spheres (centered at the points in
the cloud) must travel from their origins to reach and fill this cavity.
The d serves as a guiding value in our fitting formula, which aims to
determine a geometric point x such that its distance to all surrounding
atoms closely approximates d. By minimizing the cumulative squared
error in the objective function, we can determine the spatial coordi-
nates of the interaction site. In this process, we also considered that
when the material structure contains different elements, the spatial
coordinates of the potential sites should be adjusted based on the radii
ratio of the different elements, in order to enhance their physical
plausibility. By leveraging this interpretation, the fitting process geo-
metrically approximates the topological information provided by the
death point, establishing a connection between the topological scale
and spatial geometry. While it is possible to directly optimize the
function for each atomic aggregate to identify coordinate without

using persistent homology, this approach would transform the opti-
mization into a two-parameter problem. As a result, the computational
time would increase significantly, as demonstrated in Figure SI5.
Therefore, using persistent homology to obtain the filtration para-
meters is crucial for improving computational efficiency and ensuring
the identification of potential active sites in a more systematic and
scalable manner.

The DFT calculations

The DFT calculations were performed using VASP (Vienna Ab-initio
Simulation Package) with the projector-augmented-wave (PAW)
scheme®. The Perdew-Burke-Ernzerhof (PBE) functional was utilized
to describe electron exchange-correlation interactions. Empirical
Grimme’s D3 scheme was employed to account for van-der-Waals
interactions”. For the PdH, system, the structure optimization was
performed for the construction of MLFF and the free energy diagram
calculations. The cut-off energy set to 400 eV, and the convergence
criteria for electronic structure 0.05 eV/A with the 2 x 2 x 1 Monkhorst-
Pack k-point grid. For the PtO, system, the ab initio molecule simula-
tion was performed to generate the data for the construction of MLFF
due to its amorphous nature. The AIMD was carried out using a
canonical system synthesis (NVT) and a Nosé-Hoover thermostat at a
temperature of 300 K with Gamma-point. The free energy diagrams of
CO; electroreduction process on Pd and Pdg ¢ were calculated by the
well-known computational hydrogen electrode method® with Eq. (3):

G=Eper tEzpe — TS €))

where Epp is the ground state energy calculated by DFT. The vibra-
tional frequencies of adsorbed species were calculated to consider
entropies (7S) and zero-point energies (Ezpg) in the Gibbs free energy
within the harmonic approximations using the finite difference
method.

The graph isomorphism to remove duplicate configurations

In the process of configuration enumeration, there may be enumer-
ated configurations with the same chemical environment. Taking Pd as
an example, there are many bridge sites on the surface of Pd, and the
configurations generated by adsorbing an H on these bridge sites have
similar chemical environments, and the energy differences will be very
small. In order to avoid enumerating these configurations with repe-
ated chemical environments, we use graph isomorphism to remove
duplicates from the enumerated configurations. Specifically, the gen-
erated configuration is converted into an atomic graph by atomic
connectivity based on atomic radii, and each graph is transformed
three times by the Weisfeiler-Lehman (WL) transformation using the
WL algorithm to obtain a WL graph®. Finally, the isomorphism algo-
rithm of networkx is used to determine whether the WL graph is iso-
morphic or not, so as to obtain the unique configuration under the
current gradient.

The construction of MLFF based on DPA

DPA, a deep potential model with a gated attention mechanism, is a
pre-trained machine learning force field based on the OC20 database,
covering 56 elements and millions of atomic configurations®. Fine-
tuning DPA for specific tasks enables high-accuracy force fields more
efficiently than training MLFF from scratch. The fine-tuning process for
MLFFs leverages pre-trained weights and adapts them to target sys-
tems using high-quality DFT data. After featurizing the DFT data into a
compatible format, a loss function based on discrepancies in predicted
energies and forces is minimized through backpropagation. We
employed global fine-tuning, updating all model parameters without
freezing any components. The hyperparameter settings used in the
fine-tuning process are detailed below. For both PdH, and PtO, sys-
tems, the same hyperparameters were used (Table S1), except for the
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number of training steps. Next, we present the DFT datasets and the
results of force field fine-tuning for the PdH, and PtO, systems,
respectively.

The construction of MLFF for Pd-H system. A Pd unit cell was cut
in the (100) plane to form a 4 x4 supercell with four layers and a
vacuum spacing of 13 A was added to the end of the slab. A total of
1064 adsorption sites including the upper and lower surfaces as well as
the inner part of the slab were generated by the persistent homology
approach. For each of the 10 gradients from H: Pd=0.1 to 1, 5000
unique configurations were generated. We randomly selected fifty
structures for each H: Pd concentration gradient from all structures to
perform DFT structural optimization, resulting in 9,128 frames of
structure-energy data. The Pd-H MLFF were constructed by fine tuning
the DPA model with above DFT calculations and the pre-training
weights using DPA-1-OC2M. The training, validation, and test sets were
divided in the ratio of 85%:5%:10%. The fine-tuned process carried out
in 100,000 steps. Using DPA-1-OC2M weights on the test set before
fine-tuning, a root mean square error (RMSE) of 0.33 eV per atom for
energy and 0.14 eV A for force was obtained. After fine-tuning, the
RMSE of energy comes to 0.001 eV per atom, and the RMSE of force is
0.045eV A, The stability of the model is demonstrated by a 5-fold
cross-validation.

The construction of MLFF for Pt-O system. Icosahedral Pt;5 and
Ptss NPs were used to fine tune the DPA pre-trained model to con-
struct the Pt-O MLFF. We randomly selected five configurations for
each of the systems with O:Pt ratios of 0.1, 0.3, 0.5, 0.7, and 0.9, and
conducted AIMD simulations with a 1fs time step. In general, even
relatively short AIMD simulation durations can provide an initial
training dataset for MLFF, as we primarily focus on the structural-
energy/force pairs at DFT accuracy obtained from each ionic step,
which serve as input data for training the MLFF model®**¢., For the
five Pt;3 structures, each structure was run for 2000 frames, and for
the Ptss structures, each was run for 10000 frames, resulting in a total
of 60,000 frames of structures. The Pt-O dataset was then used to
fine-tune the DPA model. The dataset was divided into 85%:5%:10% for
training, validation, and test. A 5-fold cross-validation was performed
to confirm the robustness of the model. Before fine-tuning, these pre-
trained weights were used to go for data testing, yielding an RMSE of
0.47eV per atom for energy and 0.87eVA™ for force. After
200000 steps of fine tuning, the RMSE of energy is obtained as
0.008¢eV per atom as well as the RMSE of force 0.21eVA™. The
accuracy is similar with previous work®. In this study, the MLFF is
trained to rapidly optimize sampled configurations for trend analysis
of energy distribution. For a more detailed investigation of the sys-
tem’s dynamic processes, additional sampling can be incorporated
into the training set. By combining this with active learning, the MLFF
can be retrained from scratch to achieve a more generalized and
accurate force field.

Energy hull, Phase diagram and free energy diagram
High-throughput calculations based on the MLFF are carried out to
obtain the average adsorption energy with different concentration of
active species according to equation as Eq. (4):

E(PdgHy) E(Pdgy) 1

E,q(PdgsHy) = X x EE(Hz) “4)

Where the E(PdgH,), E(Pd¢,) and E(H,) are electronic energy of
Pd¢,H,, pure Pd and H,, respectively. The energy hull of PtO, system is
calculated in similar way with the energy of oxygen reference to HO
and H,”. For PdH, system, we have also calculated the mixing energy
to better exhibit the evolution trend as Eq. (5):

EMixing =E(Pdg4H,) — xE(Pdg4Hes) — (1 — X)E(Pdgy) )

Where the E(Pdg4H,), E (Pd¢4Hes) and E(Pdg,) are electronic energy of
Pd¢,H,, PdgHg, with lowest adsorption energy and pure Pd,
respectively.

After the obtaining of energy hull of the PdH, system and the PtO,,
system, we constructed the Pourbaix diagram for analysis the phase
diagram under different environment conditions, specifically, the pH
and potential. The computational hydrogen electrode scheme’” was
used to build the Pourbaix diagram. The lowest adsorption energy case
was used for the Gibbs free energy calculation with entropy and zero-
point energy correction.

For PdH, system, the free energy difference (AG) is calculated
according to Egs. (6) and (7) as follows:

PdgyHes < PdgyH, +(64 —x)(H" +e7) (6)

64 — x
AG=Gpq 1, — Gpan,, * ( 3 )GHz — (64 — x)(eU+0.059pH) (7)
The Gpg,,1y, and Gpg,y,, are the free energy of Pdg,H, and
Pd¢,He,, respectively. The pH was set to 7.3. U is the applied potential.
For the PtO, system, the free energy difference (AG) is calculated
according to Egs. (8) and (9) as follows:

Pt+xH,0 — 2x(H* +e7) < PtO, ®)
AG =Gpg_ — Gp — 2x(€U+0.059pH) — X(Gy o — Gy,)  (9)

The Gp_ and the Gy, are the free energy of PtO, and Pt, respec-
tively. pH and U are the pH value and applied potential, respectively.

Data availability

The sampled configurations from PH-SA, the DFT data for model
training and mechanism analysis are available on Zenodo at https://
doi.org/10.5281/zenodo0.14779452”. Source data are provided with
this paper.

Code availability
The code used to generate results in the manuscript is available from:
https://github.com/JFLigroup/PH-SA under MIT license’®.
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