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ABSTRACT: With the advancement of artificial intelligence
models, the development of scientifically grounded and structurally
appropriate feature extraction methods has become critical for
machine learning-based structure prediction and materials design.
In recent years, there has been growing dissatisfaction with
inefficient empirical descriptors and black-box feature extraction
processes that require extensive training. This article introduces a
topological data analysis-based framework for extracting structural
features of materials, offering an informative perspective on
structure—property relationships and predictive strategies. Empha-
sis is placed on the predictive power and interpretability of
topological features, highlighting their advantages in uncovering
structure—property correlations and providing physical insights into material behavior. This approach establishes a mathematically
rigorous and computationally efficient paradigm for the discovery and design of advanced materials, achieving up to 55% reduction
in prediction error for defect-sensitive properties and a notable improvement in MOF gas uptake prediction accuracy (e.g,, R* from
0.74 to 0.85), thus demonstrating both theoretical clarity and practical performance.

n the realm of physical chemistry, the primary objective of

materials investigation lies in understanding their micro-
scopic structural characteristics, which dictate their physical
and chemical properties in various applications.'  Tradition-
ally, researchers have relied on experimental techniques and
theoretical calculations to acquire the structural information.
With the rapid progress of computer science, especially the
growing influence of artificial intelligence and machine learning
technologies, the digital representation of materials structures
has become one of the central topics in materials science.*®
The extraction of structural features is not only fundamental
for revealing the intrinsic nature of materials, but also plays a
critical role in enabling tasks such as property grediction,
inverse design, and the discovery of novel materials.” In recent
years, numerous machine learning models have been
constructed, and their performance is closely linked to feature
selection.”® As a result, developing structural descriptors that
are representative, discriminative, and physically interpretable
is essential for the improvement in predictive performance,
which could help uncover the hidden relationships between
structures and properties, and ultimately accelerate the
discovery and design of advanced materials.

Current approaches for structural feature representation in
materials science can be categorized into two groups. The first
involves handcrafted, empirically derived descriptors such as
coordination numbers.”~"" The second leverages deep learning
techniques, with graph neural networks (GNNs) being a
prominent example, where crystal structures are encoded as
graphs and learned representations are integrated into end-to-
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end predictive models."”~"* While empirical descriptors are
intuitive and physically interpretable, they often suffer from
incomplete representation of structural information and are
highly dependent on subjective criteria, which may introduce
bias or overlook critical features. In contrast, GNN-based
models automatically extract high-dimensional features opti-
mized for specific tasks, and typically achieve superior
performance in predicting materials properties. However,
these data-driven representations lack physical interpretability,
making it difficult to uncover the underlying structure—
property relationships.15 Moreover, the computational cost
associated with the training of these models is substantial,
which limits their scaling to large materials data sets. The
black-box nature of these models also poses challenges for
downstream analysis and experimental guidance, thereby
constraining their application in the broader context of
materials design.

While empirical descriptors are often limited by their fixed
functional forms and deep learning-based models may suffer
from interpretability and data efficiency issues, hybrid
approaches have recently emerged. Notably, the DeePMD
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Figure 1. Schematic illustration of topological data analysis for structural feature extraction. (a) Basic elements constituting a simplicial complex
across different dimensions. (b) Graph representation of a cubic structure constructed from eight vertices. (c) Evolution of Betti numbers S, f;,
and f3, for the cubic system under increasing filtration values. (d) Fundamental components of a path complex, including vertices, directed edges,
and higher-dimensional directed paths. (e) Graph representation of a cubic system with distinct vertex weights and directionally encoded
connections. (f) Variation in fy, #;, and f3, for the directed cubic system under different filtration thresholds, capturing structural features associated

with weighted connectivity and directional topology.

framework introduces a method known as Deep Potential,'®
which constructs physically inspired intermediate descriptors
using local symmetry functions based on neighbor lists. These
are then passed through a deep neural network to obtain
system-specific representations. This approach alleviates some
limitations of handcrafted descriptors while maintaining local
chemical interpretability. However, as Deep Potential still
relies fundamentally on atom-centered local environments, it
does not capture long-range, global, or topological relation-
ships.

Algebraic topology-based data analysis offers a promising
solution to the limitations of current structural feature
extraction methods in materials science. Unlike empirical
descriptors or opaque deep learning representations, this
approach extracts structural features from rigorous mathemat-
ical theorems, enabling a reasonable and efficient description of
materials structures. Building upon the concepts from algebraic
topology, these structural features could establish a direct and
interpretable link between the atomic structures of materials
and the information encoded in the latent space of the deep
learning models. In this work, we focus on structural feature
extraction through topological data analysis (TDA). We begin
with an introductory overview of the mathematical foundation
in this method, with discussions kept at a level comprehensible
to a broad audience. We then provide some representative
examples in the application of TDA-based structural
representation in both crystalline solids and molecular systems.
Particular emphasis is placed on the predictive power and
interpretability of these topological features, highlighting their
advantages in uncovering the structure—property relationships
and providing physical insights into how geometric arrange-
ments of atoms could influence the thermodynamic and kinetic
properties of different materials. Finally, we summarize the key
challenges and emerging opportunities associated with the
integration of algebraic topology into structural data analysis,
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pointing toward a mathematically grounded and computation-
ally efficient paradigm for materials discovery and design.
TDA for structural feature extraction is centered on
identifying topological invariants that characterize the intrinsic
connectivity and shape of a structure, regardless of geometric
deformations such as stretching or bending.'” These invariants
serve as robust descriptors of the topology of materials
structures and are crucial for representing essential features
such as connectivity, loops, and voids, which are closely linked
to material properties. To rigorously define and compute these
invariants, TDA relies on algebraic topology, partlcularly the
mathematical framework of homology theory."® Within this
framework, homology groups are introduced to systematically
identify and classify “holes” or missing structures across
different dimensions, thereby capturing the most fundamental
topological characteristics that remain invariant under
continuous transformations. Homology groups provide an
algebraic representation of the topological structure by
encoding the number and types of cycles in each dimension.
The ranks of these homology groups, referred to as Betti
numbers, offer a concise summary of the topological structures.
Specifically, f,, f), and 3, quantify the number of connected
components, 1-dimensional critical structural features, and 2-
dimensional critical structural features, respectively.'” To
retain geometric information while extracting these invariants,
TDA employs a filtration process, in which a scale or threshold
parameter varies to generate a sequence of nested complexes.”’
By calculating the topological invariants across different
filtration values, TDA reveals how structural features persist
or disappear over scales. This multiscale analysis enables a
more nuanced and informative representation of materials
structures, particularly in distinguishing structures with similar
global shapes but different local geometries. The process of
extracting topological invariants is illustrated below using two
of the simplest types of complexes as representative examples.

https://doi.org/10.1021/acs.jpclett.5c01831
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When a structure is modeled as a simplicial complex for
topological analysis, each element of the structure corresponds
to a simplex. As shown in Figure la, simplices of different
dimensions represent the simplest topological units: a O0-
dimensional simplex is a vertex, a 1-dimensional simplex is an
edge, a 2-dimensional simplex is a triangle, and a 3-dimensional
simplex is a tetrahedron. Each represents the most basic
configuration for its respective dimension. We use a cube as
the representative example to illustrate the process of
computing the topological invariants. In Figure 1b, a filtration
is applied by using pairwise distances from a reference vertex as
the filtration parameter. As the parameter increases, more
edges are formed among vertices, progressively constructing
higher-order simplices and generating topological features.
Figure lc depicts the changes in the ranks of the homology
groups Hy, H,, and H,, which correspond to the Betti numbers
Bo P, and B, respectively. The value of B, representing the
number of connected components, decreases as connections
form, eventually reaching 1 when the structure becomes fully
connected. The value of ), representing 1-dimensional holes,
reaches 6 as the cube configuration forms closed loops. The
value of f3,, representing 2-dimensional voids, becomes 1 when
an enclosed cavity is formed. These topological invariants
across filtration scales serve as concise and informative
descriptors of the structural geometry and connectivity of the
cubic configuration. The above process is referred to as feature
extraction based on persistent homology.”"**

When a structure is modeled as a simplicial complex for
topological analysis, all vertices are treated as indistinguishable
points, which leads to a loss of information intrinsic to the
vertices themselves. This abstraction may be insufficient for
accurately capturing the structural characteristics of certain
materials systems. To address this limitation, materials
structures can instead be represented as a path complex, in
which each component element is a path. As illustrated in
Figure 1d, paths of different dimensions are defined in a
topological sense: a O-dimensional path corresponds to a
vertex, a l-dimensional path is a directed edge whose
orientation is determined based on its underlying physico-
chemical meaning, a 2-dimensional path consists of two
connected directed edges, and a 3-dimensional path consists of
three sequentially connected directed edges. To demonstrate
this representation, a cube with eight vertices that are assigned
with distinct weights is used as an example. For any two
vertices with the same weight, a bidirectional connection is
defined, while vertices with different weights are connected by
a directed edge from the lower to the higher weight. Based on
this representation, topological invariants of the path complex
can be computed. As shown in Figure le, the filtration is
constructed using pairwise distances as the filtration parameter.
As the filtration value increases, more directed connections
(paths) are formed, giving rise to new topological features.
Figure 1f shows the evolution of the ranks of the homology
groups Hy, H;, and H,, corresponding to the Betti numbers S,
B, and fB,, respectively. Here, f§; indicates the number of
connected components, which reaches 1 when the structure is
fully connected. f3; represents the number of directed cycles,
which reaches 2 when two loops are formed within the
structure. 3, denotes the number of higher-order directed
cavities, with 8, = 1 indicating the formation of an enclosed
directional cavity. These topological invariants computed at
different filtration scales provide informative and robust
descriptors for characterizing the structure of the cube with
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weighted vertices. The above process is referred to as feature
extraction based on GLMY homology.****

In addition, for systems with varying structural complexities,
advanced topological methods such as persistent hypergraph
homology and persistent directed hypergraph homology can be
introduced to extract the topological invariants from different
perspectives.””*® These approaches enable the characterization
of higher-order and directed interactions within a structure.
However, increasing the complexity of the topological
representation does not necessarily lead to superior predictive
power of the models. The effectiveness of topological
descriptors depends on the specific characteristics of the
system under investigation. Therefore, careful system-specific
analysis is essential to determine the appropriate representa-
tion. Moreover, constructing multiscale topological features for
a single system can provide a richer and more nuanced
understanding of its structure. The following examples
highlight successful instances of such feature constructions in
physically meaningful systems.

Several TDA techniques are employed in this work to extract
structural features of materials. Each method is grounded in
algebraic topology and tailored for applications in materials
modeling. Persistent homology quantifies topological features
such as connected components, loops, and voids across
multiple spatial scales. It builds a filtration over the structure
by progressively adding geometric elements, tracks the
appearance and disappearance of topological features, and
summarizes their persistence as a concise signature. This
approach captures essential shape information with robustness
to noise and geometric deformation. GLMY homology, named
after Grigor’yan, Lin, Muranov, and Yau, extends classical
homology to directed systems by defining topological elements
as directed paths rather than simplices. It is particularly
effective for analyzing structures with directional relationships,
such as molecular graphs or reaction networks. Its persistent
formulation allows multiscale tracking of asymmetry and
directional connectivity. Hypergraph and directed hypergraph
homology generalize topological representations beyond
pairwise interactions. In a hypergraph, hyperedges connect
multiple nodes simultaneously, making it suitable for modeling
many-body interactions in materials and biomolecules.
Directed hypergraphs further encode the directionality of
interactions, such as donor and acceptor roles in hydrogen
bonding, enabling more detailed analysis of structural and
functional organization. Together with filtration strategies
based on geometric or chemical parameters, these techniques
provide interpretable and multiscale structural representations
that support predictive modeling and structure—property
analysis in materials science.

Persistent homology was initially introduced for the
exploration of molecules, with one of the earliest successful
examples being the prediction of the formation energy and
stability of fullerene molecules.”” It was observed that the heat
of formation is related to the presence of local hexagonal
cavities in small fullerenes, while the total curvature energies of
fullerene isomers are associated with their sphericities, which
are quantified by the lengths of long-persisting /3, bars.
Following this pioneering study, persistent homology has been
widely applied in molecular feature extraction.’”’' In
crystalline materials, persistent homology enables systematic
sampling across diverse coordination environments and
morphologies, allowinig for automatic and efficient identifica-
tion of active phases.’” This approach addresses the challenge

https://doi.org/10.1021/acs.jpclett.5c01831
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Figure 2. Schematic illustration of feature extraction in real physical space. (a) Representation of simplices within a MOF structure, highlighting the
correspondence between molecular geometry and topological elements.”” Copyright 2025 Royal Society of Chemistry. Licensed under a Creative
Commons Attribution-NonCommercial 3.0 Unported License. (b) Depiction of a complex porous structure and the associated loops captured by
the corresponding simplicial complex.”” Copyright 2025 Royal Society of Chemistry. Licensed under a Creative Commons Attribution-
NonCommercial 3.0 Unported License. (c) Persistent homology-based feature extraction process, illustrating the correspondence between
topological invariants and structural characteristics.”” Copyright 2025 Royal Society of Chemistry. Licensed under a Creative Commons
Attribution-NonCommercial 3.0 Unported License. (d) Topological features extracted using interatomic distance as the filtration parameter.*®
Copyright 2023 American Chemical Society. (e) Topological features extracted using bond angle as the filtration parameter.”® Copyright 2023
American Chemical Society.
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Figure 3. Schematic illustration of structure—property relationships revealed by topological features. (a) Illustration of the Jahn—Teller effect,
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its associated directed graph representation (right), highlighting directional atomic interactions.”® Copyright 2023 American Chemical Society. (c)
The structural diagrams and the digraphs of 0-C,B;oH;,, m-C,B;oH,,, and p-C,B,oH;, and their topological features.*> Copyright 2024 World
Scientific Publishing Company. (d) t-SNE dimensionality reduction of category-specific topological features extracted from MOF materials. Each
green point represents a distinct MOF, while highlighted circles and triangles mark materials with maximum and minimum values, respectively, for
four key properties: N, uptake (mol kg™), O, uptake (mol kg™"), self-diffusivity of N, at infinite dilution (cm* s™"), and self-diffusivity of O, at
infinite dilution (cm? s™").>” Copyright 2025 Royal Society of Chemistry. Licensed under a Creative Commons Attribution-NonCommercial 3.0

Unported License.

of generating and evaluating large numbers of atomic
configurations in heterogeneous catalysis. While traditional
persistent homology does not differentiate between atomic
species, multiscale topological learning frameworks can resolve
this limitation by separating the structure into chemically
meaningful subsystems. For instance, lithium-only and lithium-
free substructures can be analyzed separately, and topological
features such as cycle density and minimum connectivity
distance can be used to ensure both structural integrity and ion
transport compatibility.”> This strategy has proven effective in
accelerating the discovery of fast lithium-ion conductors. For
hybrid systems such as metal—organic frameworks (MOFs),
which combine both crystalline and molecular characteristics,
persistent homology has been demonstrated to be a successful
approach.”” As shown in Figure 2a, the simplices representing
a porous structure are constructed. Figure 2b visualizes the
emergence and disappearance of loops under varying filtration
thresholds. Figure 2c highlights the corresponding features
extracted from this structure, demonstrating the validity of this
method in encoding the structures of MOFs. Furthermore, in
more complex applications such as protein—ligand binding

8060

prediction, persistent homology has also exhibited excellent
predictive power.”*

When analyzing systems composed of multiple atomic
species, persistent GLMY homology demonstrates improved
effectiveness in feature extraction.>® As illustrated in Figure 2d,
interaction patterns among atoms in a molecule evolve as the
filtration distance increases, and the corresponding adjacency
matrices clearly reveal that such interactions are inherently
asymmetric and nonequilibrium. This asymmetry enhances the
sensitivity of feature extraction in systems with heterogeneous
atomic types.28 The construction of filtration parameters can
be versatile. Typically, filtration values based on relative
distances between nodes within the system are employed, as
they are particularly effective in capturing intrinsic structural
features. Nevertheless, in certain contexts, it is advantageous to
define a fixed external reference frame to extract more
interpretable macroscopic features. Figure 2e presents an
example in which a spherical coordinate system is defined with
the South Pole as the origin and angular values serve as the
filtration parameter.”” In this setting, structural interactions are
incrementally included with increasing angles, allowing for
more effective differentiation between chiral molecules.

https://doi.org/10.1021/acs.jpclett.5c01831
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Similarly, in the context of heterogeneous catalysis, where both
ligand and coordination effects must be considered to identify
potential catalytic configurations, persistent GLMY homology
offers notable advantages in encoding spatial configurations
and node weights. In the design of high-entropy alloy catalysts,
conventional feature extraction algorithms often fail to
distinguish the subtle influences of chemically similar metal
species. By incorporating atomic weights, persistent GLMY
homology enables refined topological partitioning of samples
across the complex and extensive chemical space of high-
entropy alloys, thereby providing a robust feature foundation
for subsequent catalytic property prediction and structure
generation.

For systems featured in more complex topological relation-
ships, persistent hypergraph homology offers distinct advan-
tages. In the structural representation of proteins, hypergraphs
demonstrate a high capability in modeling higher-order and
multivalent interactions, which contrasts with conventional
graph-based methods that are limited to capturing pairwise
residue interactions.”®’” Hypergraphs allow a single hyperedge
to connect multiple nodes simultaneously, making it possible
to naturally represent cooperative multiresidue features
commonly observed in proteins, such as hydrophobic cores,
hydrogen-bonding networks, and structural motifs.”® These
higher-order associations play critical roles in stabilizing global
conformations and facilitating biological function during
processes such as protein folding, domain organization, and
molecular recognition.”” By employing hypergraph-based
representations, it becomes feasible to accurately capture the
combinations of spatially distant residues that are functionally
coupled, thereby improving the ability to model nonlocal
dependencies within protein structures. Furthermore, recent
studies have demonstrated that directed hypergraphs exhibit
superior performance in protein—ligand recognition tasks,
primarily due to their ability to finely encode the interaction
directionality and multibody causal dependencies. Unlike
undirected hypergraphs, directed hypergraphs explicitly
represent source and target nodes of molecular interactions,
such as donor and acceptor roles in hydrogen bonding or the
ligand-induced conformational responses in proteins.*”*" This
allows for more precise modeling of authentic binding
mechanisms. Additionally, directed hypergraphs can represent
synergistic interaction pathways involving multiple atoms or
residues, thereby improving the accuracy of functional site
identification and deepening the understanding of conforma-
tion-dependent regulation.

Topological data analysis demonstrates high sensitivity to
structure—property relationships.””*>**~*" As illustrated in
Figure 3a, the Li,Mn,0,/LiMn,0, cathode system exhibits a
Jahn—Teller distortion, where the oxidation of Mn to a +3
oxidation state during lithiation induces elongation of the
MnOyg octahedra along the z-axis. Persistent GLMY homology
with interatomic distance as the filtration parameter captures
the topological changes caused by this distortion, with
noticeable divergence in H, and H; observed beyond a
filtration threshold of 0.2 A. Further analysis using angle-based
filtration reveals that the spherical filter initially omits parts of
the directed edges, leading to a reduced number of connected
components in H; compared to the number of atoms.
Simultaneously, variations in the positions of oxygen atoms
result in the formation of additional directed cycles (H;) and
cavities (H,) throughout the filtration process, reflecting
pronounced topological changes induced by structural
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distortion. Figure 3b presents the molecular structures of p-
fructose and D-glucose, which share the same molecular
formula (C4H;,0¢) yet differ in spatial configuration, resulting
in distinct optical activity and biological functionality. D-
glucose exhibits physiological activity through enzymatic
recognition in the human body, whereas d-fructose does not.
This functional divergence arises from geometric differences
that are captured in their topological representations of the
molecules. By incorporating directional information into the
molecular structures, both distance-based and angle-based
persistent GLMY homology effectively extract topological
features that differentiate the stereoisomers, providing insight
into structure—activity relationships.28 0-C,B,(H;;, m-
C,B\0H}, and p-C,B(H,, are three isomers with distinct
carbon atom arrangements, which significantly influence their
electron distributions, thermodynamic stabilities, and lumines-
cent properties. Among them, the p-type is the most
thermodynamically stable, while the o-type is the least, due
to the varying spatial separations of carbon atoms and the
presence or absence of intervening boron atoms. As shown in
Figure 3¢, the topological fingerprints extracted via persistent
GLMY homology capture the intrinsic structural differences
among the three isomers. At a filtration parameter of 1.7, the o-
type exhibits the lowest /3, due to denser directed connections
between carbon atoms, while the p-type shows the highest f3,
as its carbon atoms are disconnected from boron. Furthermore,
both o- and m-types form directed cycles, resulting in f, = 1,
whereas the p-type lacks such cycles, yielding B, = 0. These
topological invariants are strongly correlated with the relative
positions of carbon atoms, serving as a powerful tool for
multielement cluster property prediction.

Topological features can effectively reveal structure—
property relationships, even for complex systems.”™*" A
study on SARS-CoV-2 combined 3-dimensional structural data
with mutation information to establish a topological model of
the Mpro protein structure—activity relationship.’” The
research began by calculating the minimum atomic distance
between Mpro residues and the drug nirmatrelvir based on
their cocrystal structure, defining their topological proximity
within the structure. The mutation frequency of residues over
time was then correlated with their distance to the drug,
revealing that residues located near the drug-binding site
(within 15 A) exhibited a significant increase in mutation
frequency after widespread use of PAXLOVID, forming
potential hotspots for drug resistance. This method, combining
spatial topological information with dynamic mutation trends,
uncovered the evolutionary pressure exerted on target-adjacent
regions by drug use, thus providing a structure—mutation—
function framework that offers a topological perspective for
predicting and monitoring drug resistance risks. Figure 3d
presents a 2D t-SNE dimensionality reduction, where each
green point represents a different MOF material, with
clustering reflecting the influence of topological features.””
Key properties such as N, uptake, O, uptake, and self-
diffusivity are mapped, with materials marked with maximum
and minimum values. Even without predictive modeling,
topological features effectively distinguish structures with
significant performance differences, indicating that the model
itself captures key structure—property relationships. For
example, the MOF material labeled ELOZEK clean, with
the lowest N,/O, uptake and Henry constant (8.64 X 1073
mol kg™'), shows poor gas adsorption capacity. Similarly,
COVPAG_clean exhibits the lowest N, self-diffusivity (4.15 X
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Figure 4. Schematic illustration of the advantages of topological descriptors in property prediction and structural design. (a) Performance
comparison of graph neural network (GNN) models with and without Angular Spherical Persistent Homology (ASPH) on an oxygen-based
perovskite data set, using a global max pooling layer.* Copyright 2025 American Chemical Society. (b) Comparison of Pearson correlation
coefficients (PCCs) and standard deviations (s.d.) across various models for protein—ligand binding affinity prediction on the CASF-2016
benchmark data set."' Copyright 2024 Springer Nature. (c) Workflow of a machine learning model for band gap prediction in 2-dimensional
perovskite structures, utilizing topological descriptors (QC).** Copyright 2025 American Chemical Society.

1077 cm?® s7'), reflecting its limited diffusion ability. These
differences highlight the power of the category-specific
topological learning method in directly revealing key structural
changes through category-specific topological embeddings,
efficiently distinguishing materials with extreme performance
values in the MOF data set.

Topological features have demonstrated clear advantages
over conventional descriptors in property prediction tasks
across diverse material and molecular systems.*”**7>' As
shown in Figure 4a, GNN models, including crystal graph
neural network, graph attention neural network, and Trans-
former architectures, were evaluated on a curated data set of
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oxygen-containing perovskites.”” The incorporation of topo-
logical descriptors led to a significant reduction in mean
absolute error (MAE) across all models, indicating a consistent
enhancement in the prediction of defect-sensitive properties.
Among the tested models, the Transformer network achieved
the most substantial improvement, with its MAE decreasing
from 1.55 to 0.72 eV, representing a 55% relative reduction.
This improvement can be attributed to the attention
mechanism in Transformer networks, which encodes inter-
actions between central and neighboring nodes using query-
key similarity. Such similarity is informed not only by
elemental properties but also by chemical context captured
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Table 1. Comparison of Topological Feature Extraction and Conventional Structural Descriptors

Applicable
Method Systems Captures Complex Structures
Topological Data Crystals, MOFs,  Excellent for both global and
Analysis biomolecules hierarchical topology
SOAP™ Molecules, solids  Good for local symmetry;
limited global expressiveness
Coordination Solids, MOFs, Simple local structure only
Number®* catalysts
GNNs'? Molecules, Good multiscale potential via
proteins, message passing
crystals
Atomic Crystals, surfaces Focused on local geometry
Environment
Descriptors>4
MD-derived Liquids, Captures dynamics, but weak
Features®” biomolecules on topology

Structural Sensitivity

Highly sensitive to defects
and geometric distortions

Moderate; focused on local
atom overlaps

Sensitive to coordination but
misses long-range order

Good, but training dependent

Local sensitivity only

Sensitive to atomic motion,
not shape

Interpretability Scientific Rigor and Efficiency

Strong (mathematically
grounded and
interpretable)

Very efficient; rigorous and
nonparametric

Moderate; local environment
visualizable

Efficient and popular; less
expressive in complex cases

Very efficient; lacks depth for
advanced systems

High; intuitive for basic
chemistry

Medium; partial via
attention/gradient maps

Expensive; often black-box and
data-dependent

Moderate; interpretable via
geometry

Fast; limited structural depth

Low; dynamic stats are
indirect

Computationally costly; weak in
structure property mapping

through topological features, such as defect counts and spatial
proximities, thereby enhancing the ability to extract defect-
related information.

The effectiveness of topology-enriched Transformer models
extends to biomolecular domains. As illustrated in Figure 4b,
TopoFormer-Seq consistently outperformed existing ap-
proaches in protein—ligand binding affinity prediction on the
PDBbind v.2016 data set, achieving a Pearson correlation
coefficient (PCC) of 0.866 and a root-mean-square error
(RMSE) of 1.561 kcal/mol, surpassing the previous best-
performing model, TopBP22. Compared to other recent deep
learning frameworks such as graphDelta, ECIF, and DeepA-
tom, TopoFormer demonstrated superior predictive stability
and accuracy, regardless of training set variations."'

In periodic crystalline systems, a topological learning model
based on the Quotient Complex (QC) has been developed for
accurate prediction of band gaps in 2-dimensional perovskite
materials.*® As illustrated in Figure 4c, the modeling
framework consists of three primary stages. First, atomic
types such as organic atoms (e.g., C), inorganic metal atoms
(e.g, Sn), and halogen atoms (e.g, Cl), along with their
associated configurational sites (including organic sites A,
inorganic sites B, halogen sites X, and composite types such as
ACBX), are systematically extracted from the crystal unit cell.
Second, a multiscale filtration process is constructed using
atomic radii as the filtration parameters, enabling the
generation of a sequence of quotient complexes that encode
periodicity and higher-order structural relationships. From this
filtration, topological feature vectors, referred to as Quotient
Complex Descriptors (QCDs), are derived to represent the
intrinsic topological properties of the structure. Third, these
descriptors are integrated with a gradient boosting tree (GBT)
model to achieve highly accurate band gap predictions.
Notably, the quotient complex framework offers a distinct
advantage over conventional material representations by
naturally encoding periodic structure and capturing local
topological interactions that are critical for structure—property
relationships.

Similar improvements in model performance were demon-
strated in property prediction tasks for MOFs, where
topologically informed model outperformed state-of-the-art
baselines, including descriptor-based models, MOFTrans-
former, and PMTransformer.”” Specifically, in tasks involving
Henry’s constants for N, and O,, gas uptake, and self-
diffusivity under both 1 bar and infinite dilution conditions, the
proposed model consistently achieved higher coeflicients of
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determination (R?) and lower MAE and RMSE values. For
instance, in O, uptake prediction, topologically informed
model attained an R* of 0.85 and an RMSE of 6.82 X 1072,
outperforming MOFTransformer’s R* of 0.74 and RMSE of
9.28 X 1072 Similarly, in predicting the self-diffusivity of O, at
1 bar, the proposed model achieved an MAE of 3.21 X 107°
and an RMSE of 4.45 X 107°, exceeding the accuracy of
PMTransformer and other baseline methods. These results
underscore the efficacy of category-specific topological features
in capturing structure—property relationships within MOFs,
thereby enabling models with improved generalizability and
predictive performance.

Despite the promising successes of topological data analysis
in capturing multiscale structural features, it is important to
acknowledge its limitations and potential failure scenarios.
First, while persistent homology is sensitive to geometric and
topological variations, its expressiveness is not uniformly
optimal across all structure—property correlation tasks. In
systems where properties depend on very subtle electronic
effects, such as fine energy-level splitting or orbital hybrid-
ization, purely topological features may lack the resolution
required to capture such distinctions. Additionally, feature
instability can arise near topological tipping points, which refer
to regions in the filtration space where small geometric
perturbations, such as those caused by thermal noise or
numerical precision, can result in abrupt changes in the birth
or death of topological features. This issue is particularly
relevant in molecular dynamics simulations with thermal
fluctuations or in low-symmetry crystalline systems, where
minor variations may significantly alter the resulting
persistence diagrams. Furthermore, for highly disordered or
amorphous materials, defining a meaningful filtration can be
challenging, often leading to nonreproducible or ambiguous
topological features. Empirical studies have observed that TDA
performs less effectively in tasks where global geometry is less
influential than local chemical environments or specific
functional groups. For instance, in the prediction of reaction
yields for certain organic molecules or in property modeling of
noncrystalline polymers, topological features tend to under-
perform compared to descriptors that explicitly encode
functional groups or electronic properties. This limitation
arises because TDA focuses on capturing geometric and
relational invariants, but not energetic or quantum-level
interactions. As a result, its performance is highly dependent
on the extent to which structure governs function in the
targeted application. These considerations highlight the
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necessity of integrating topological descriptors with chemically
informed or domain-specific features. Rather than serving as a
universal replacement, topological data analysis is best applied
as a complementary representation that enhances the geo-
metric understanding of structure in cases where spatial
organization plays a central role.

Table 1 presents a comparative overview of various feature
extraction methods commonly used in materials and molecular
modeling, highlighting their applicability, structural sensitivity,
interpretability, computational efficiency, and theoretical
foundation. As shown in the table, topological data analysis
(TDA) stands out across multiple criteria, especially in its
ability to capture complex, hierarchical structures and provide
strong interpretability grounded in rigorous mathematics.
Based on the aforementioned studies, topological data analysis
has demonstrated its critical role in elucidating structure—
property relationships in materials. Owing to its foundation in
rigorous mathematical theory, topological feature extraction
offers a more scientifically grounded alternative to empirically
driven approaches. In contrast to trainable models such as
graph neural networks, topological descriptors can capture
higher-dimensional structural features while requiring signifi-
cantly less computational time, rendering their cost negligible
in typical systems. Most importantly, topological features have
already achieved superior predictive performance compared to
state-of-the-art models across a variety of domains. This
indicates a promising new paradigm for computational
materials research, where structure-informed, theory-driven
representations can enhance both the interpretability and
accuracy of property prediction.

As summarized in Table 1, TDA maintains both rigorous
mathematical grounding and high computational efficiency
compared to conventional descriptors and deep learning-based
models. The computational cost of persistent homology, a core
TDA method, depends primarily on the number of simplices
generated from atomic interactions. For a structure with n
atoms, the worst-case time complexity of Vietoris—Rips
filtration is O(n?), but in practical settings involving sparse
molecular or crystalline graphs and filtration restricted to low-
dimensional homology (e.g., Hy, H;, H,), the effective runtime
is substantially lower.”®>” Benchmark studies on biomolecular
systems have reported wall-clock runtimes of approximately
0.1-0.3 s per structure using libraries such as Ripser on a
single CPU.*> These results are consistent with typical
structure sizes found in porous materials and molecular
crystals. In contrast, deep learning approaches such as graph
neural networks (GNNs) or Transformer-based models,
require significantly higher computational overhead, including
GPU acceleration and extensive model training, which may
span several hours for large data sets. This contrast highlights
the advantage of TDA descriptors in rapid, large-scale
screening tasks and supports their integration as lightweight
yet expressive representations in hybrid machine learning
workflows.

The selection of a suitable TDA representation hinges on
three key factors: (1) the nature of the structure (e.g,
crystalline, molecular, disordered), (2) the type of physical
property being predicted (e.g., electronic, transport, binding),
and (3) the presence or absence of directional, periodic, or
many-body interactions. Persistent Homology with distance-
based filtration is most effective in periodic or rigid systems
where connectivity and voids at different length scales matter,
such as in porous materials, ionic crystals, or framework
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structures. GLMY Homology, which encodes directionality, is
especially suited for systems with intrinsic asymmetry or
nonequilibrium behavior, such as chemical reaction networks,
charged molecular graphs, or transition states. When angle-
based filtrations are applied, it can capture stereochemistry or
field-driven anisotropy (e.g, in chiral molecules or Jahn—
Teller-distorted lattices). Directed Hypergraph Homology
becomes advantageous in biomolecular or soft-matter systems
where cooperative, many-body, and causally directional
interactions dominate. Protein—ligand binding, allosteric
regulation, or multisite adsorption are typical examples.
Furthermore, we emphasize that feature validation remains
an empirical process. For most applications, we recommend
cross-comparing the predictive relevance of different topo-
logical features (e.g, Betti numbers, cycle density, lifetime
statistics) using model-agnostic feature importance analysis
such as SHAP or permutation tests. By introducing these
guidelines, we aim to make TDA more accessible and
operational for a broader materials research audience. We
agree that the method’s generalizability is best realized when its
customization is clearly connected to physical intuition and
domain-specific modeling goals.

Beyond geometry-based analysis, an important future
direction lies in extending topological data analysis to
incorporate quantum mechanical information that is essential
for ab initio simulations. While current TDA frameworks
primarily operate on atomic coordinates or interatomic
distances, many properties predicted by quantum chemical
methods, such as energy levels, charge distributions, and
orbital hybridizations, originate from electronic structure
features that are not directly represented by spatial geometry.
One promising strategy is to apply persistent homology to
continuous scalar fields generated by quantum calculations,
including electron density, electrostatic potential, or orbital
isosurfaces. These fields can be discretized on a grid and
analyzed through sublevel set filtrations in order to extract
topological invariants that capture aspects of electronic
organization.58 Nevertheless, this extension introduces several
computational challenges. These include increased data
dimensionality, strong sensitivity to grid resolution and
threshold values, and the difficulty of aligning topological
features with physically meaningful quantum observables.
Addressing these issues will be crucial for developing
topology-informed representations that connect structural
geometry with electronic structure, ultimately enabling broader
applications of TDA in quantum mechanical modeling.

The superior interpretability of topological features makes
them a promising direction for novel materials design.”” As
structure-aware encoders, topological descriptors can system-
atically encode atomic and geometric configurations into
mathematically meaningful representations. These representa-
tions offer a scientifically grounded encoding scheme that can
serve as robust inputs to downstream models with structure
reconstruction capabilities. By integrating topological features
into generative frameworks, several persistent challenges in
materials design can be effectively addressed, including
difficulties in encoding periodic hierarchical structures,
capturing long-range correlations, and ensuring chemical
validity during inverse design. This approach enables the
incorporation of domain knowledge into data-driven pipelines,
thereby enhancing both the fidelity and controllability of

structure generation in complex materials systems.
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Topological data analysis does not function as an isolated
methodology. A promising direction lies in its integration with
existing machine learning models, where the structural
sensitivity of topological descriptors to physical configurations,
along with their compatibility with neural network architec-
tures, offers substantial potential for enhancing predictive
accuracy.*”%* Recent implementations have demonstrated the
feasibility of integrating topological descriptors into neural
network architectures. For example, the TopoQA framework
incorporates persistent homology-based features into GNNs
networks for protein interface quality assessment, showcasing a
practical pipeline for combining topological and learned
structural representations.”’ By embedding topological features
into learning pipelines, it becomes possible to enrich the
model’s understanding of spatial and relational complexities
inherent in crystal structures. This integration facilitates a more
comprehensive exploration of the chemical space, enabling
more informed predictions and the discovery of novel
materials with targeted properties.

Topological data analysis shares conceptual elements with
traditional structural descriptors, such as interpreting f, as
connected components analogous to isolated atom clusters,
and f,, B, as higher-order interaction motifs. However, TDA
provides a fundamentally different perspective by constructing
a continuous filtration over the structure, thus capturing
multiscale topological features that evolve smoothly with the
filtration parameter. Unlike fixed-cutoff descriptors, persistent
homology summarizes connectivity patterns and voids across
all scales, yielding hierarchical, global invariants that encode
complex geometric correlations beyond local pairwise or three-
body interactions. Moreover, TDA descriptors are mathemati-
cally grounded with stability guarantees and robustness to
noise, enabling more reliable representation of structural
complexity. This multiscale and topologically global viewpoint
allows TDA to implicitly encode an extensive range of
interactions, including subtle long-range correlations and
higher-dimensional cycles, which are typically not accessible
by conventional local descriptors limited to specific neighbor
shells or handcrafted functions. Therefore, TDA should be
viewed as a complementary and enriched feature space that
systematically extends the information content of classical
descriptors. This extension underpins the consistent improve-
ment in predictive modeling observed across diverse materials
and molecular systems, as shown by our results.

Overall, topological data analysis provides a powerful and
underexplored framework for representing and understanding
structural information in materials science. In contrast to
conventional descriptors and deep learning representations
that focus primarily on predictive performance, topology-based
methods capture fundamental and scale-invariant features that
reflect intrinsic geometric and connectivity patterns. As the
field advances toward more interpretable, generalizable, and
automated materials discovery, algebraic topology through
persistent homology, GLMY homology, and hypergraph-based
approaches offers a principled foundation for encoding
structural information in a physically meaningful way.
Although further work is needed to integrate these descriptors
seamlessly into predictive and generative pipelines, the
conceptual clarity and representational strength of topological
methods make them a compelling direction for the future of
materials informatics.
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