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ABSTRACT: Persistent path homology represents an advanced mathematical approach explicitly tailored for directed 
systems. With its remarkable ability to characterize unbalanced or asymmetrical relationships within data, this method 
demonstrates great promise in qualitative analysis of the intrinsic topological features present in materials and molecules. 
In this work, we introduce persistent path homology at the first time for carborane analysis. Intrinsic path topological 
features are used to predict the stability of closo-carboranes. We qualitatively explain the connection between path top-
ological features and properties on o-C2B10H12, m-C2B10H12 and p-C2B10H12. The correlation coefficients between linear 
predictions based on persistent path homology and thermodynamic stability are higher than 0.95, and that for chemical 
stability are about 0.85. While the correlation coefficients based on nonlinear models are increased to 0.99 and 0.95, 
respectively. These results indicate that persistent path homology shows excellent capabilities in structural and stability 
analysis of multi-element cluster physics.
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1.  INTRODUCTION
Carborane is a class of polyhedral borohydride clusters, 
in which one or more borohydride B(H) vertices are 
replaced by C(H) units.1 The bonding theories and 
structure–energy relationship of carborane clusters, spe-
cifically carborane derivatives,2,3 have shown great 
potential in such diverse areas as catalysis (including 
metal catalyst4 and C–F, C–H and C–C functionaliza-
tions5), medicine (including the diagnosis of cancer6 and 
neutron capture therapy7), nonlinear optical materials,8 
conducting organic polymers (including solution-based 
and solid-state electrolytes5), coordination polymers,9 
and other diverse fields.10,11 The quantitative analysis of 
the stability of the ground-state structure of carborane 
clusters is currently a subject of intensive research in 
cluster physics. For example, the stabilities of closo- 
carboranes were compared and analyzed employing 
comprehensive ab initio calculations.10 With the aid of 
DFT calculations, the difficulty of the experimental syn-
thesis of closo-carboranes was explained by the value of 
the HOMO-LUMO gaps.12 Although these quantum 
computations are classical tools in the field of cluster 

physics, they still have many limitations such as time 
consumption and high computational cost, and they 
become difficult to handle as the number of atoms in the 
system increases. Closo-carboranes, C2BnHn+2, the first 
kind of carboranes discovered by humans,11 have been 
favored by scholars both experimentally and theoreti-
cally.13,14 Moreover, the stability of closo-carboranes has 
attracted extensive attention with the increase in the 
number of B atoms.10,12,15

An emerging family of data analysis methods 
called Topological Data Analysis (TDA) enables the 
simplification of complex data by combining ideas 
from algebraic topology16 with other mathematical 
tools, such as neighborhood complex,17 Morse theory18 
and hypergraph19 and has yielded compelling results 
on problems in biological systems. Among them, per-
sistent homology has been developed as a powerful 
tool to capture geometric and topological information 
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of data in changing scales20–22 and has been applied in 
various fields.23–28 Especially in the field of materials 
science, persistent homology has been extensively 
employed for property prediction of amorphous sol-
ids,29 halide perovskites30 and other substances.31

In recent years, it has been successful in the quan-
titative analysis of cluster structures, for example, by 
obtaining topological fingerprints of different struc-
tural configurations analyzed to quantitatively predict 
the stability of single-element clusters such as 
fullerenes.32 Another result is the use of persistent 
homology methods to obtain topological fingerprints 
of a large number of different cluster configurations, 
which reveal the hidden structure–energy relation-
ships in single-element lithium clusters by combining 
them with machine learning models.33 Persistent 
homology has become a powerful method for analyz-
ing single-element cluster structures.

Despite its successful application in various fields, 
persistent homology theory still cannot directly deal 
with multi-element systems. For example, carboranes 
are heteronuclear molecules, which can be formed by 
different elements. Since different types of atoms have 
different properties, polarizability becomes more and 
more apparent. However, the classical theory of persis-
tent homology, which treats atoms as equivalent verti-
ces, cannot cope with the asymmetry (polarizability) or 
unequal interactions between different types of atoms 
in real systems. Persistent path homology (PPH) 
designed for directed graphs was proposed by 
Grigor’Yan et al.34–36 as a promising approach for ana-
lyzing protein-ligand interactions,37 complex diseases38 
and molecules.39 In our work, to apply PPH to the 
quantitative analysis of the stability of multi-element 
carborane clusters, each structure is represented by a 
directed graph in which the atoms are weighted verti-
ces. In this process, symmetric bidirectional connec-
tions are established when describing interactions 
between atoms of the same type, while weight-based 
asymmetric unidirectional connections are established 
when describing interactions between atoms of differ-
ent types.

In this paper, a quantitative analysis of the struc-
ture of C2BnHn+2(n = 2 ~ 22) is performed by using 
PPH. First, the distance-based persistent path homol-
ogy (DPPH) and the angle-based persistent path 
homology (APPH) complement each other to give the 
path homology fingerprints of each multi-element  
structure. Next, taking o-C2B10H12, m-C2B10H12 and 
p-C2B10H12 as examples, we distinguish these three 
multi-element structures by PPH and relate their 
path homology fingerprints to their properties. 

Furthermore, we found a linear relationship between 
the PPH fingerprints of the structure and the enthalpy 
of formation, PPH and the HUMO-LUMO gap and 
successfully predicted the stability of close-carboranes 
with guaranteed accuracy. In addition, we introduce 
nonlinear models, specifically, the gradient-boosted 
regression tree (GBRT) model, into the nonlinear pre-
diction of formation enthalpies and HOMO-LUMO 
gaps with convincing accuracy. This is the first time 
that PPH has been used for the quantitative analysis of 
multi-element systems. And the results demonstrate 
the potential of PPH for quantitative analysis of mul-
ti-elemental structures.

2.  METHODS
PPH is an extension of the path homology theory36 that 
provides a way to measure the persistence of the 
homology of path complexes over a range of scales. 
This allows us to study the topological structure of a 
space in a way that captures the evolution of its 
path-connected components. It can be used to extract 
meaningful topological signatures from data and gain 
insights into the underlying structure of complex sys-
tems, particularly those that can be modeled as directed 
graphs or networks. In this section, we introduce the 
key concepts related to persistent path homology the-
ory, including paths, path complexes, path homology, 
filtrations and PPH.

2.1.  Path, path complex and path homology
Let V be a nonzero finite set. For a given integer p ≥ 0, 
the elementary p-path on V is a sequence i0i1i2,…,ip of 
elements in V. Let K be a field and let Λp = Λp(V) be a 
K-linear space generated by all the element p-paths. 
We denote ei i ip0 1, ,  the generator corresponding to 
the  elementary p-paths i0i1,…,ip and the family 
{ , , , }, ,e i i i Vi i i pp0 1 0 1

 ∈  is a basis of Λp over K. Specifically, 
we make the convention that Λ−1 = 0. An element in Λp 
can be uniquely written as

	 µ = ∈∑a e ai i i
i i i

i i ip

p

p0 1

0 1

0 1, ,
, ,

, ,, .



   K � (1)

For any integer p ≥ 0, a K-linear map ∂:Λp→Λp−1 is 
defined as

	
∂ = =

∂ = − >
=
∑

e p

e e p

i

i i i
k

i i i
k

p

p k p

0

0 1 0

0 0

1 0
0

, ,

( ) , ,, , , , ,

   

   … …� …

� (2)
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where ik
 indicates the omission of the index ik, and thus 

∂ can be deduced as a boundary operator on (Λp)p,  
and ∂2 = 0.

A path complex on V is a nonempty collection P 
of elementary paths on V and it satisfies that i1i2,…, 
ip ∈ P and i0i1i2,…,ip−1 ∈ P for any i0i1,…,ip ∈ P. Let G be 
a digraph. The collection of paths on G is a path com-
plex, denoted by P(G). The paths in P are called 
allowed paths, the linear space generated by all allowed 
paths is denoted as

A A P

P

p p

i i i
i i i p

i i i

i
a e i i i ap

p

p

= =

∈ ∈

( )

| , , ,, ,
, ,

, ,  0 1

0 1

0 1

0

0 1






 K
ii i Vp1 ∈
∑












. � (3)

Here, as convention, let A–1 = 0 be the null space. 
The space of ∂-invariant p-paths can be deduced by

  Ω−1 = 0,   Ωp = Ωp(P) = {x ∈ Ap|∂x ∈ Ap−1},   p ≥ 0.� (4)

Then (Ωp)p is a subchain complex of (Λp(V))p. The 
path homology is defined by

	 H H pp p p
p

p

P P; : ( )
ker

, .K( ) = ( ) =
∂

∂
≥

+

Ω
Ω

Ωim
   

 
1

0 � (5)

The path homology of a digraph G is that of path 
complex P(G). The p-th Betti number of the digraph G 
is the rank of the homology Hp(G;K), denoted as βp(G).

2.2.  Persistent path homology and filtrations
Let (S, ≤) be an order set and (S, ≤) can be regarded 
as a category with elements in S as objects and all the 
binary orders as morphisms. A filtration of path 
complexes means a covariant functor ℱ: (S, ≤) → Path 
from the category (S, ≤) to the category of path com-
plexes. For each element a ∈ S, ℱa is a path complex 
such that we have fb,c ° fa,b = fa,c for a ≤ b ≤ c, where 
fa,b:ℱa → ℱb is the morphism induced by a → b. The 
morphism fa,b induces a morphism of path homology 
f H Ha b p a p b, : ; ; .ℱ ℱK K( ) → ( )  The (a, b)-persistent 
path topology of ℱ is defined by

H H H pp
a b

p a p b
, ; ; ; , .ℱ ℱ ℱK K K( ) = ( ) → ( )( ) ≥im   0 � (6)

The (a, b)-persistent Betti number is defined as the 
rank of H p

ab ℱ ;K( ).
In practice, the path complex is usually defined on 

digraphs. Let Digraph denote as the category of 

digraphs. A filtration of digraphs is a covariant functor 
Γ:(S, ≤) → Digraph from the category (S, ≤) to the cat-
egory of digraphs. A filtration of digraphs can induce a 
filtration of path complexes, which results in the PPH 
of digraphs. And different filtration can result in differ-
ent persistence.

2.3.  Distance-based filtration
Let G = (V, E) be a digraph, where V represents the set 
of data points in a metric space (X,‖⋅‖). Then, there is 
a weight function d:E → R on the edge set E deduced by

	 d(x1, x2) = ‖x1 – x2‖,   (x1, x2) ∈ E ⊂ X × X.� (7)

Here, we assume the metric space (X,‖⋅‖) as the 
Euclidean space with L2-norm. Then, let Et = {(x, y) ∈  
E|d(x, y) ≤ t} and Gt = (V, Et). It can be deduced that 
G:(R, ≤) → Digraph, t ↦ Gt is a filtration of digraphs, 
which leads to a persistent diagram D(G) of G.

2.4.  Angle-based filtration
Let G = (V, E) be a digraph with V in Euclidean space 
R3. The process of the angle-based filtration of digraphs 
is as follows. Above all, we fix a coordinate system 
which is unique for a predefined rule. The filtration 
process is based on a sequence of angles in a prescribed 
order (S2, ≤) such that S2 = {(α, β)|α ∈ [0, 2π], β ∈ [0, π]} 
is an ordered set with order deduced by

	 (α, β) ≤ (α′β′),   if (α ≤ α′) or (α = α′, β ≤ β′).� (8)

For discrete case, let m, k be positive integers, we 
can choose the ordered set S2 by

	
2

0 1 0 1
π πt
k

s
m

t k s m, , , , , , , .





= − = −   � (9)

In this work, we set m = 36, k = 72 and achieve a 
filtration based on the angle shown as spiral progress 
in a polar coordinate system. Finally, we get a filtration 
of digraphs based on angles P:(S2, ≤)→Digraph, 
θ ↦ Pθ, where (S2, ≤) is an ordered set on a sphere and 
Pθ = (Vθ, Eθ), where Vθ = {x ∈ V|x ≤ θ ∈ S2} and Eθ = E ∩  
(Vθ × Vθ) = {(x, y) ∈ E|x, y ∈ Vθ}.

2.5. � Extracting the intrinsic topological 
features

Each closo-carborane is transformed into a point cloud 
according to atomic coordinates, as shown in Fig. 1(a), 
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where the element types are labeled with colors. We 
assign a weight, represented by the volume, to each 
element type based on its electronegativity value. PPH 
is applied to extract the Betti-n (βn) number of the 
point cloud as a topological invariant representing the 
geometric information of cluster structure. The βn is 
the rank of the homology group Hn. The construction 
of the homology groups is carried out based on paths, 
which is the basic building block of the path complex. 
Figure 1(b) shows the 0-path, 1-path, 2-path and 
3-path. Then, a mathematical operation called bound-
ary operator is introduced to obtain the chain complex. 
Finally, the homology groups (Hp,Hp−1,…,H0) are 

generated from the chain complex. In this paper, 
Betti-0 (β0) and Betti-1 (β1), which generally represent 
the number of independent components and the num-
ber of directed cycles separately, are used for further 
analysis.

Roughly speaking, the above method extracts only 
the persistent path homology of the multi-element 
structure over a fixed geometric relation. Specifically, 
through the filtration process, we continuously capture 
the topological invariants of the multi-element struc-
ture in a changing scale in the path sense, thus captur-
ing the structural topological information while also 
preserving the geometric information. Considering the 

Fig. 1.    (Color online) Take C2B9H11 as an example to show PPH. (a) The structural diagrams of C2B9H11. The brown balls represent the C 
atom, the green balls represent the B atom, and the white balls represent the H atom. The point cloud constructed from the atomic coordi-
nates of C2B9H11. The red points represent the C atom, the blue points represent the B atom and the green points represent the H atom. The 
larger the electronegativity value of an atom, the larger the volume. (b) Illustration of the basic component that makes up the path complex, 
p-path, where p = 0, 1, 2 and 3. (c) Over the filtration, the directional connections between atom pairs gradually increase. Directed connec-
tions are connections of atoms with higher electronegativity values to those with lower electronegativity values. (d) The DPPH fingerprints. 
The vertical axis is the rank of homology groups H0 and H1 and the horizontal axis is Euclidean distance. (e) The sphere is divided into 2592 
zones according to angle. During the filtration process, which starts at the south pole, each region is filtered clockwise and the directed 
connections between pairs of atoms gradually increase. Directed connections are those between atoms with a higher electronegativity value 
and those with a lower electronegativity value. (f) The APPH fingerprints. The vertical axis is the rank of homology groups H0 and H1 and 
the horizontal axis is the region number.
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lack of interatomic distance information, the distance 
relative to each node in the point cloud is chosen as the 
filtration parameter. As shown in the left chart of sub-
graphs in Fig. 1(c), the filtration parameter is 1.1, 
meaning only directed connections for atomic pairs 
with Euclidean distances less than 1.1 can be con-
structed. Under this condition, only two directed con-
nections exist for carbon and hydrogen atoms. In the 
process of increasing the filtration parameter, when the 
Euclidean distance between two atoms is not greater 
than the parameter, a directed edge is formed connect-
ing these two atoms, the direction of which is deter-
mined by the atomic weights. Figure S1 records the 
connectivity relationships for several different filtra-
tion parameters, where each dark blue entry represents 
a directed connection between atoms. Over the filtra-
tion process, topological invariants for homology H0 
and H1 are depicted in Fig. 1(d). The maximum value 
of β0 is 22 at the beginning, which corresponds to 22 
atoms of the molecule. After that, as the filtration 
parameters increase, the number of connection rela-
tionships also increases, so the independent compo-
nent decreases, which leads to a monotonic decrease in 
β0. The value of β1 is 1 when the filtration parameter is 
equal to 1.5 and reaches a maximum value of 3 when 
the filtration parameter increases to 1.8. This shows 
that DPPH can embed the positional relations in the 
structure into PPH.

In order to analyze the structure from an external 
perspective, we introduce APPH. First, we assume the 
existence of a sphere whose center is the center of the 
point cloud. The south pole direction of the sphere is 
obtained by the vector sum of all paths, and then the 
horizontal plane of the sphere is obtained by the right-
handed spiral rule. Similar to meridians and latitudes, 
we can divide the sphere into several, in this work we 
are dividing it into 2592 regions. The angle-based fil-
tration process starts from the south pole and traverses 
each region clockwise from south to north, as shown in 
Fig. 1(e). During filtration, each pair of atoms within 
each traversed region establishes a directed connection 
whose direction is determined by the weights. The top-
ological invariance of homology groups and point 
clouds is shown in Fig. 1(f). β0 reflects the number of 
independent components in the system, so as the filtra-
tion parameter increases, β0 decreases. β1 indicates the 
number of directed cycles and disappears at a filtration 
parameter of 1080. Based on the above topological 
approach, the following work will establish the rela-
tionship between multi-element structure topological 
features and attributes.

3.  RESULTS

3.1. � Persistent path homology analysis  
for o-C2B10H12, m-C2B10H12 and p-C2B10H12

Different types of atoms will lead to asymmetric inter-
actions between atoms, which is an important factor 
affecting the macroscopic properties of multi-element 
structures. o-C2B10H12, m-C2B10H12 and p-C2B10H12 are 
three different isomers of C2B10H12, respectively, with 
two carbon atoms adjacent to each other, two carbon 
atoms separated by a boron atom and two carbon 
atoms opposite each other. Their structures are shown 
schematically in the left subfigure of Figs. 2(a)–2(c). 
They differ in terms of electron distributions, electron 
affinities and acidic.40 In terms of thermodynamic sta-
bility, p-C2B10H12 is the best, m-C2B10H12 is the second 
and o-C2B10H12 is the worst. Recently, it has been 
shown that the thermodynamic stability of the three 
clusters is related to the relative position of the carbon 
atoms and that the repulsive effect is significantly 
weaker with the insertion of a boron atom between two 
carbon atoms.41 Furthermore, it has been found that 
unlike m-C2B10H12 and p-C2B10H12, o-C2B10H12 shows 
intriguing luminescent properties due to the presence 
of carbon-carbon bonds.42 However, persistent homol-
ogy is unable to effectively distinguish these three iso-
mers. As shown in Fig. S2, there is no significant 
difference between the barcode of the m-C2B10H12 and 
the o-C2B10H12. PPH captures the structural differences 
between these three clusters. The connections high-
lighted in red are influenced by the position of the 
carbon atoms, as shown in the right subgraphs of 
Figs. 2(a)–2(c). Figure S3 documents the linkage rela-
tionships, where each dark region represents a directed 
connection between atoms.

Next, the DPPH fingerprints of o-C2B10H12, 
m-C2B10H12 and p-C2B10H12 are established (Fig. 2(d)). 
As shown in Fig. 2(d), the difference in β0 between the 
three multi-element structures only appears when the 
filtration parameter is around 1.7. Therefore, we com-
pare the digraphs of the three clusters when the filtra-
tion parameter is 1.7. As shown in Fig. 2(e), it can be 
seen that the carbon atoms in o-C2B10H12 have more 
directed connections than the boron atoms in 
m-C2B10H12, and therefore, the β0 for o-C2B10H12 is 
lower than that for m-C2B10H12. In contrast, the carbon 
atoms in p-C2B10H12 are not attached to boron, so the β0 
of  p-C2B10H12 is higher than that of m-C2B10H12. 
Furthermore, as shown by the green highlighted con-
nection in Fig. 2(e), a directed cycle formed by 1-paths 
is created in o-C2B10H12 and m-C2B10H12, respectively, 
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and thus the value of β1 is 1. In contrast, p-C2B10H12 
does not create directed cycles because it lacks a 
directed connection between carbon and boron atoms, 
and therefore, β1 is 0. Thus, this filtration parameter 
reflects the effect of the position of the carbon atom on 
the topological features of these three isomers. From 
the above analysis, it can be found that the differences 
in the fingerprints correspond to a certain topological 
feature of the structure, indicating that the path topo-
logical features can reflect the intrinsic information of 
multi-element structures, which may be useful for pre-
dicting the properties of the multi-element clusters. 
For example, the luminescence properties of closo- 
carborane can be predicted by applying fingerprints to 
identify the directed connections between carbon 
atoms.

Figure 2(f) shows the APPH of o-C2B10H12, 
m-C2B10H12 and p-C2B10H12. As shown in Fig. 2(f), the 
difference in the relative position of carbon atoms is 
manifested as a general variation of H0 and H1 between 
the three isomers over the filtration process. The 
APPH gives a better indication of macroscopic topo-
logical features. Unlike DPPH, APPH can distinguish 
between these three isomers at more different filtration 

parameters. We choose the digraphs of the three clus-
ters with a filtration parameter of 810 as an example for 
comparison. As shown in Fig. 2(g), o-C2B10H12 has the 
most connections, m-C2B10H12 has the next most con-
nections, and p-C2B10H12 has the least connections. The 
connection highlighted in green is a directed cycle that 
exists only in p-C2B10H12, a cluster with β1 of 1.

3.2. � Linear prediction for the stability  
of closo-carboranes

The above results indicate that PPH is well repre-
sented in capturing structural features that can quali-
tatively explain the stability and properties of 
closo-carboranes. To exemplify the potential of PPH, 
we constructed 21 structures, namely C2BnHn+2 
(n = 2 ~ 22), to quantitatively predict the stability of 
closed carboranes.

First, we calculate the enthalpy of formation of each 
structure to quantitatively assess the thermodynamic 
stability of the structure. We calculate the integration of 
H0 with the filtration parameter, i.e., the area enclosed 
by the β0 curve, to detect the relationship between the 

Fig. 2.    (Color online) Application of DPPH and APPH to three isomers. (a–c) The structural diagrams and the digraphs of o-C2B10H12, 
m-C2B10H12 and p-C2B10H12. The brown balls represent the C atom, the green balls represent the B atom and the white balls represent the H 
atom. In the digraph, the directed connections depending on the relative position of carbon atoms are marked in red. (d) The DPPH finger-
prints of o-C2B10H12, m-C2B10H12 and p-C2B10H12. The horizontal coordinate is the filtration parameter, and the vertical coordinate is H0 and 
H1. (e) Digraphs when the filtration parameter is 1.7. Depending on the relative position of carbon atoms, the directed connections are 
marked in red and the directed cycles are marked in green. (f) The APPH fingerprints of o-C2B10H12, m-C2B10H12 and p-C2B10H12. The hori-
zontal coordinate is the filtration parameter, and the vertical coordinate is the H0 and H1. (g) Digraphs when the filtration parameter is 810. 
Depending on the relative position of carbon atoms, the directed connections are marked in red and the directed cycles are marked in green.
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fingerprints and the enthalpy of formation. The results 
show a strong linear relationship between the integrals 
of the DPPH and the APPH fingerprints and the 
enthalpy of formation (Figs. 3(a) and 3(b)). The Pearson 
correlation coefficients (PCC) between the integral and 
enthalpy of formation are 0.999 and 0.993, respectively, 
indicating that topological features are highly correlated 
with thermodynamic stability. β0 represents the number 
of independent components, and its integral represents 
a summation of the number of independent compo-
nents over the filtration process. The enthalpy of forma-
tion is a thermodynamic property that represents the 
change in energy when one mole of a substance forms 
from its elements in their standard states. When chemi-
cal bonds form, energy is released because atoms are 

more stable in a bonded state than when they are iso-
lated. The number of chemical bonds in a molecule is 
directly related to its energy. The overall energy of a 
molecule is the sum of the energies associated with all 
the bonds within it. Therefore, as the number of atoms 
bonded in the molecule increases during filtration, we 
obtain information about the energy in the molecule, 
i.e., the enthalpy of formation, through the sum of the 
Betti number.

In the same way, we calculate the integration of H1 
with the filtration parameter, i.e., the area enclosed by 
β1 curve, to detect the relationship between the finger-
prints and the enthalpy of formation. As a result, we 
find a strong linear correlation between the APPH 
fingerprints and the enthalpy of formation, with a PCC 

Fig. 3.    (Color online) Results of linearly predict the stability of closo-carboranes. (a, b) Linear relations between the integral of H0 of the 
DPPH and the APPH fingerprints and the enthalpy of formation. (c) Linear relation between the integral of H1 of the DPPH and the APPH 
fingerprints and the enthalpy of formation. (d) Linear relation between the integral of H0 of traditional persistent homology fingerprint and 
the enthalpy of formation. (e, f) Linear relations between the linear sum of the values at the inflection point of β0 curve of the DPPH and the 
APPH fingerprints and the HOMO-LUMO gap. The points in the above fitting figures are the data points of C2BnHn+2(n = 2 ~ 22), and the 
dotted lines are the fitting line. (g) Closo-carboranes structure diagram of different atomic numbers. The brown balls represent the C atom, 
the green balls represent the B atom and the white balls represent the H atom. (h–l) Digraphs of two directed cycles show different connection 
relations and the value of β1.
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of 0.954 (Fig. 3(c)). The value of β1 represents there are 
two directed cycles in Fig. 3(h). As shown in 
Figs.  3(i)–3(k), when a connection between the two 
directed cycles occurs, a new directed cycle is created 
(β1 = 3). In Fig. 3(l), when the two directed cycles are 
fully connected (β1 = 2). Thus, β1 can be considered as 
the number of complex transmission paths in the 
structure, reflecting the distance and interaction 
between the topological configurations. It can be 
observed that there are three outliers in Fig. 3(c), 
C2B2H4, C2B3H5 and C2B4H6. This is because they con-
tain too few atoms to form a directed cycle (Fig. 3(g)). 
As a comparison, we introduce the traditional persis-
tent homology for C2BnHn+2(n = 2 ~ 22), as shown in 
Fig. S4. Figure 3(d) shows the linear relationship 
between the integral of H1 obtained by traditional per-
sistent homology and the enthalpy of formation. The 
PCC is 0.775, which is lower than that of the PPH. The 
integral of H1 quantifies the change in the number of 
directed cycles within the structure. These directed 
cycles reflect the action of forces on multiple atoms in 
the molecule, representing the energy involved in 
forming a portion of the molecule when a higher- 
dimensional configuration is achieved. Therefore, the 
number of directed cycles is expected to have a strong 
linear relationship with the enthalpy of formation.

As a description of the excitation energy, the 
HOMO-LUMO gap can be used to assess chemical 
stability. We calculate the linear sum of the values at the 
inflection point of the β0 curve to detect the relation-
ship between the fingerprints and the HOMO-LUMO 
gap. The results show a linear relationship between the 
linear sum of both the DPPH and the APPH finger-
print and the HOMO-LUMO gap (Figs. 3(e) and 3(f)). 
The PCCs between the linear sum and the HOMO-
LUMO gap are 0.842 and 0.864, respectively. When 
using DPPH, a strong linear relationship between the 
fingerprints of structures containing a large number of 
atoms and the HOMO-LUMO gap can be seen, while 
outliers are structures containing a small number of 
atoms, such as C2B14H16, C2B16H18 and C2B20H22. When 
using APPH, a strong linear relationship is observed 
between the fingerprints of structures containing a 
small number of atoms and the HOMO-LUMO gap, 
while outliers are structures containing a large number 
of atoms, such as C2B2H4, C2B4H6 and C2B5H7. Therefore, 
when predicting the HOMO-LUMO gap, the DPPH 
and the APPH fingerprints are complementary to each 
other. The HOMO-LUMO gap indicates the structure’s 
susceptibility to chemical reactions, which can be 
interpreted as the likelihood of chemical bond reor-
ganization. Information on the changes and bonding of 

the independent components of the atoms is recorded 
in the β0 curve, thus reflecting the stability of the 
molecular structure.

3.3. � Nonlinear prediction for the stability  
of closo-carboranes

GBRT becomes a powerful nonlinear prediction model 
with advantages such as high efficiency and less sus-
ceptibility to overfit.43 In contrast to the enthalpy of 
formation, the HOMO-LUMO gap cannot reach a 
highly linear correlation with the PPH fingerprints. In 
this part, we introduce the GBRT to predict the 
HOMO-LUMO gap for closo-carboranes.

In the above work, we establish oriented connec-
tions between pairs of atoms containing covalent 
bonds in 21 optimized closo-carboranes structures for 
linear prediction. To apply GBRT to predict the 
HOMO-LUMO gap, in addition to the 21 optimized 
structures, we build 2172 structures in the optimiza-
tion process. Then, we obtain the PPH fingerprints 
considering the bonding restriction and the PPH fin-
gerprints without considering the bonding restriction, 
a total of 2193 structures for prediction and the details 
of GBRT are shown in Table S1. Figures 4(a) and 4(b) 
show prediction results of the HOMO-LUMO gap 
when considering bonding restriction. The PCCs 
between the DPPH and the APPH fingerprints and the 
HOMO-LUMO gap reach 0.878 and 0.974, respec-
tively, demonstrating that GBRT has higher predictive 
power than linear prediction. Figures 4(c) and 4(d) 
show the prediction results of the HOMO-LUMO gap 
without bonding restriction. The PCCs reach 0.926 
and 0.974, respectively. We observe that the PCCs 
between the DPPH fingerprint when without bonding 
restriction and the HOMO-LUMO gap are higher than 
those when bonding restriction is considered. It indi-
cates that GBRT successfully extracts and integrates a 
large number of complex and cluttered topological 
features. Similarly, introducing GBRT into the nonlin-
ear prediction of the enthalpy of formation, the PCCs 
are all around 0.99 (Fig. S5) and the combined results 
are shown in Table S2, demonstrating the strong gen-
erality of PPH of predicting stability.

Finally, we provide a comprehensive comparison of 
three approaches: the graph-based method, the simple 
complexes method and the path complex approach. As 
illustrated in Fig. S6, the graph-based method, when 
compared to the simple composite shape method, fails 
to capture topological information beyond the one-di-
mensional simple complexes. Additionally, it lacks the 
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capability to extract crucial details of intramolecular 
voids and cavities. In contrast, the simple complexes 
method, when compared to the path complex approach, 
falls short in recognizing the directionality of bonds 
and is not suited for extracting data on asymmetric 
interactions between different atoms. A significant 
advantage of the path topology method is its innova-
tive feature extraction filtering process. This process 
leverages the ability of the simple complexes method to 
refine the topological features inherent to both the 
simple complexes and path complexes methods. 
Importantly, this refinement does not compromise the 
topological significance of the features.

Next, we proceed with a comparative analysis of 
these three methods in predicting two properties: 
enthalpy of formation and HOMO-LUMO gap. 
Figure 3 illustrates the correlation assessments between 
the simple complex approach and the path complex 
approach for linear predictions. Notably, the path 
complex approach exhibits a significantly higher cor-
relation, emphasizing its superior performance in this 
regard. Meanwhile, we employ a Graph Convolutional 

Network (GCN) feature extraction method44 for non-
linear prediction, in contrast to the path complex 
approach outlined in our manuscript. Figure S7 pre-
sents the predicted enthalpy of formation and HOMO-
LUMO gap obtained through the GCN feature 
extraction method under the GBRT model. While the 
predictions are also favorable, the PCC is still lower 
than the 0.999 and 0.971 reported in our paper.

4.  CONCLUSION
Topology, as a novel method for data analysis, can 
greatly simplify the complexity of data while retaining 
critical information and has recently become one of the 
most promising methods for studying molecular struc-
tures. However, the applicability of traditional topolog-
ical methods is not satisfactory when studying the 
cluster structure of multiple elements. In this work, we 
introduce PPH, a more appropriate and effective alge-
braic topological method, as the new tool for the anal-
ysis of carboranes. To validate the proposed method, 
we first performed a quantitative analysis of the 

Fig. 4.    (Color online) Nonlinear prediction of closo-carboranes stability by GBRT. (a, b) Prediction of the HOMO-LUMO gap by the DPPH 
and the APPH fingerprints when considering bonding restriction. (c, d) Prediction of the HOMO-LUMO gap by the DPPH and the APPH 
fingerprints without considering bonding restriction. The points in the above diagram are the data points of C2BnHn+2(n = 2 ~ 22), and the 
dotted lines represent the standard lines when the prediction is completely accurate.

(a) (b)

(c) (d)
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structure and stability of C2BnHn+2(n = 2 ~ 22). Above 
all, the DPPH and the APPH fingerprints are obtained 
as the intrinsic features of closo-carborane. In the first 
task, we distinguish o-C2B10H12, m-C2B10H12 and 
p-C2B10H12 and qualitatively analyze the properties of 
C2B10H12 based on PPH. We also use the features 
extracted from H0 and H1 as input to the linear relation-
ship to achieve a prediction accuracy of PCCs above 
0.95 for the thermodynamic stability of closo-carbo-
rane and around 0.85 for the chemical stability. Then, 
we introduce GBRT into the nonlinear prediction of 
the enthalpy of formation and the HOMO-LUMO gap, 
showing higher PCCs and demonstrating the strong 
generality of the PPH fingerprint in predicting stability. 
We believe that when combined with cutting-edge 
machine learning models, PPH will certainly become a 
more powerful method for advanced characterization 
in terms of multi-element structures and pave the way 
for structural design and new material discovery.
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