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Applications of in-situ characterization techniques in studying
battery interfacial evolution mechanisms
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Abstract: In secondary batteries, the evolution of electrode/electrolyte interfaces plays a
crucial role in battery performance and stability. In this study, we review several advanced
representative in-situ characterization techniques based on their working mechanisms,
including atomic force microscopy, three-dimensional laser confocal microscopy,
electrochemical quartz crystal microbalance, electrochemical differential mass spectrometry,
Raman spectroscopy, and Fourier transform infrared spectroscopy. Based on the evolution of
interfaces in secondary batteries, we categorize these phenomena into the evolution of
intermediate phases at the electrode/electrolyte interface from liquid to solid, the
electrodeposition process of deposition-type metal anodes, and the evolution of the three-
phase interface in metal-gas batteries, as well as the electrochemical decomposition and
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dissolution of solid components from solid to liquid. Several examples of applying these
advanced in-situ characterization techniques to complex systems are provided in this work,
demonstrating the multi-scale, three-dimensional analytical capabilities of multi-modal in-situ
interface characterization. The combined use of these techniques not only offers a deeper
understanding of the dynamic evolution of electrode/electrolyte interfaces under actual battery
operating conditions but also reveals key factors that affect battery performance and stability.
We also discuss the challenges and progress in current research and propose future research
directions. The applications and development of in-situ interface characterization techniques
will contribute to a deeper understanding of interface evolution mechanisms, improving battery
performance and stability, and promoting advancements in battery technologies.
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interfacial evolution mechanisms
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Fig. 1 Schematic diagram of in-situ AFM setup

1.2 FERNZ#HEAHAREEHE

FF R T BB (AFM) G TAE R B, AFM7E
Gha) b RS Y R KRB . SR 4 S S Ak it
WK RERS, BIanss . VSR TTR 4 8 57 IR AL i
TEHARR PR AR, T A BIEUOKR HE B 5T

K, IR TR YRR A O AL AFM PRI T B
ReAfEE. Bk, RITTAE—FRHOK R R AL
SR T B, B 5 AL AFM [ 3R AE#EAT AN
WRHH o AEXAEOL T, O B e (X DL e 15 i
WA, RADE S BB TR R ik
B AR LI T B

SR, AR G062 B B I3k T 6 245 5 1l
e, K552 BIPRS00, DS AR T b
g TH., FEE AR SRR, B L
R A RO BB T, 30
AR PR AR, AR XESC I I 2 FC 58 1 57
HESEAT . FET 0, AT R AL =480t
SERE DB R — A R R TT 5. WOLILR AR
B ) AR B A RO e, @il — R
IR IR AR BURE R IR E T, JFIE AR
BHROGE 5 RAE RFE R R . K ERAAET
AT DR W2 ) £ T T, I8 E T R A
1 =4 F R,

HARRYE, WOCI IR B mT DA AL It
IR P S R ARIRES . BIAEUAR A & 8 il R
EARRRIEZAK 3 B0 b ANE SR A B R P4k, B30
WO RESC BEAT AR B, 15 BT T
PRSI 53— JrH, AAEOC BN B &
TEAT A9, B EO b B BEAT AL B AT =
YT, 193BEJRUURK =T AR S . X
= HERRAR 1A BT A TR R I AR R
AN F T A AL . 0 3 2R A 8 Al B (1 T S
AMLTEIR TG0 BB R IR, I Refe i
M SE I =4EERUE R, AT SRR R )R f
ARG i 0 A AN S AL AL S 14 T 5
TH. Wi 5EAAFMEE S, 7 LAY K 3]
TR RURE e T B A HhL s 57 T ) SR 2% A R
1.3 BUFARREFXT

FEZ R, BT AN B B, P&
FELAAR VR R 2L 2 P AR AR T A A P A o e I A i ]
RPN, SR A BTRIAR . T AR R
FRERUN, EE RPN EH, DRSS L S 1
JRENE T AR R R, BUERE ST
P RN I E i AR A . I8
B, R A Ak 2 T S ) R e B
B, R PR R AT, TS B AL SR
S R BEIR B F A B A i B AR AL T (mass



% 2 RS R RACEORTE

FEL L 5 T S AL ATL A B 7 v ) 2 743

accumulation per molar electron transferring, MPE).
X FARART — N VBORE S SEA4) 30 [] AH AE R ) 9 T
it BRI MPEAE#S S €1, DA, Ay DLk SEgs
3 B MPE 18 5 0 (1 F Ak 2 07 B B E 147 X6
B, AT MHLER 2 T s 5 T s A iy B F20
7% [& F kI MPE 8 BT 75 2 1) 99 w0 2200 1) HE 1
JR B ARIKS B 5 B A P IR AN D B R 3R, H
1k % A B K Bl K P (electrochemical quartz
crystal microbalance, EQCM)nJ DL 5 3¢ SEHLIX >
J7 TH RS AEDI & . EQCM A2 2% T 38 AR R
(QCM)7 I LAY 7 B B A5 R A Fee 17T Sk 1 57 [T AR AR AX
a5 . QCM Iy J5 3 R T 1 7 o Sl A4 10 380 s 280
XA S A T A2 A b A HL AR SRR MR B, I
P IAEIRAR HATERIN . T 1959 4F G. Sauerbrey
PRI, FEaARINYE F— R RS SRS
g, HESH T Sauerbrey e, BITE LA ST Hy

BYE T QCM B il R T A 1F R, IR IR 2240
EANINFE RRIE L, DAY DAE e A A ) AR A
ETHE T PR AR,

EQCM 2L+ QCM ) T A J5 B s i i pb = A
TR, W 2 Brn. EQCM AL A5
AP PRGBS AR, . ARk
O AF LR R G AR, RS
DL IRATR IR « W, O B AT DIE A 9
s VAP RIS 2 A 5 B PO B9 <2 J = (41 A, P, Cu
SE)ALR . AL BT DA £ R iR 10 B R
RS REXT O B BEAT B BEAT A, XM A G
A SV S I B F AR AR ) S AR AL, IR DA
AT ALK, SR ORGSR B HL A
B BB HE T NS RE A B AR AT . 1K
Tl 73 9k T R 2 S SEAL AR AT AIE A HL e 1 e 4 1t
TERA IR T

Auxiliary

Electrolyted

Work

I?n-:-ferencel electrode

electrode | _ / Au\

electrode

2 BUFAREFRFH

ERERAREERREE

Fig. 2 Schematic diagram of EQCM setup
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Fig. 3 Schematic diagram of in-situ Raman setup
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Fig. 5 Classification of interface evolution systems in secondary batteries
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microscopy measurement of zinc dendrite growth™™
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