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ABSTRACT: Metal—organic frameworks (MOFs) have attracted considerable attention owing to their multifaceted applications
and structurally tunable characteristics. Powder X-ray diffraction (XRD) is an essential technique for high-throughput
characterization of MOFs. However, it remains challenging to automatically interpret the XRD data due to the diversity and
complexity of the geometric structures of MOFs. Herein, we propose a generative artificial intelligence framework based on the
Stable-Diffusion architecture for deciphering the structures of MOFs from powder XRD patterns. This model, named as Xrd2Mof,
has incorporated domain-specific knowledge by using a coarse-grained representation scheme, which leads to an accuracy of over
93% in identifying the ground truth MOF structure corresponding to the targeted XRD pattern. Xrd2Mof can be directly applied to
a diverse range of MOF structures that cover nearly all types of framework topologies, thereby establishing a novel technological
avenue for automated structural analysis of MOFs in self-driving laboratories.

Bl INTRODUCTION

Metal—organic frameworks (MOFs) were first introduced by
Yaghi et al. in 1995." Since then, research on their design,
synthesis, characterization and application has expanded
exponentially due to their versatile and tunable nature.
MOFs are porous polymeric materials composed of metal
nodes and organic linkers connected through coordination
interactions to form specific network structures.” Their
exceptional porosity and high specific surface area have
enabled applications in gas storage, separation, and cataly-
sis.” "' Recent advances in the synthesis strategies have
broadened their applicability to areas such as biomolecular
surface coating,'> optoelectronic memory computing,"’ drug
delivery systems,"* fuel cells and supercapacitors.*

The progress in the study of MOFs relies on the design of
their structures, which can be accelerated by high-throughput
experiments performed by the fully automated robotic
laboratories (also known as self-driving laboratories) that
have emerged in recent years.m_18 In this context, X-ray
diffraction (XRD) plays a pivotal role in efficiently resolving
the crystal structures of MOFs at the atomic scale.'” Single-
crystal XRD (SXRD) was generally employed for definitive
structural solutions in previous studies of newly synthesized
MOFs, which provides accurate information on atomic
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positions to enable the complete construction of three-
dimensional structures. However, SXRD requires labor-
intensive preparation of sufficiently large single crystals and
complex refinement procedures, thus limiting its application in
high-throughput experimentation.””~>* In contrast, powder
XRD (PXRD) can be used to elucidate the atomic structures of
materials under conditions where single crystals are unavail-
able.”>** While PXRD exhibits high compatibility with the
automatic MOF synthesis platforms, the information on
atomic-level details is typically limited in PXRD patterns of
MOFs. The key to applying PXRD in structure identification
of MOFs lies in the precise prediction of the framework
geometry prior to the indexation of its PXRD pattern,
otherwise the overlapping nature of the peaks will prevent us
from robust pattern matching.”*> At present, we know of no
algorithm that can accurately interpret all the structures in
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Figure 1. Overview of the generative Al models for the generation of artworks and atomic structures. (a) A typical Al model used to convert
textual prompts into artistic painting. During pretraining, a large data set of paired text and images is fed to the model, enabling it to map the
patterns of semantic description to visual representation, which optimizes the understanding of scene features. Then, a generative model synthesizes
these insights via architectures such as the diffusion model, iteratively refining latent representations to produce an artwork that aligns with the
input description. (b) A generative Al model using PXRD pattern to decipher the crystal structure of a MOF synthesized in high-throughput
experiments. The compositional information on metal nodes and organic linkers will also serve as input data. The coarse-grained representation,
which was proposed to effectively characterize the geometry of MOF skeletons, is employed to facilitate the generation of MOF structures.

MOF family from PXRD data, especially without expert
interference such that it can be implemented in the self-driving
laboratories.”*’

The rapid advancement of artificial intelligence (AI) has
demonstrated great potential in resolving the challenge of
automated PXRD interpretation.”® A series of efforts have been
previously devoted to phase identification of inorganic
compounds from the PXRD data, using algorithms such as
convolutional neural networks (CNNs).>”** However, due to
the complexity of MOF structures, Al models designed for
inorganic compounds cannot be directly extended to MOFs.
Given that there are several public databases with large-scale
structural data of MOFs, such as Cambridge structural
database (CSD),>> CoRE MOF 2019°° and Reticular
Chemistry Structure Resource (RCSR),” it has become
remarkably convenient to establish Al models for PXRD
interpretation of MOFs using synthetic PXRD patterns.*®
Actually, a recent study has developed a model called XtalNet
to predict crystal structures based on synthetic PXRD data
generated from a simulated MOF data set.”® However, this
model demonstrated efficacy only in a limited set of simulated
MOF structures, and there remains a significant gap in
prediction accuracy when it is applied to PXRD data of
experimental MOF samples.

To tackle the challenge of automated PXRD interpretation
of MOFs, we propose a powerful generative Al model that
incorporates the domain-specific knowledge into the frame-
work. Naturally, generative models can function as intelligent
agents capable of interpreting textual descriptions and
generating the corresponding visual images, which typically
relies on extensive data sets of paired text-image examples to
discern the correlations between descriptive language and
visual elements (Figure la). In the present work, we treat

PXRD pattern as the textual input and MOF structure as the
visual output within the framework of a text-to-image model.
Leveraging the Stable Diffusion architecture,*® a generative
model named as Xrd2Mof is developed to decipher the MOF
structure from PXRD data (Figure 1b). Domain-knowledge-
guided coarse-grained representations are utilized to simplify
the MOF structures, which carry the key geometric
information for PXRD interpretation. By training on a MOF
data set of 79,658 entries as extracted from CSD,"" this model
can achieve 93% accuracy in identifying the most probable
candidate structure that match with the input PXRD pattern.
All known MOF topologies have been covered by the model,
which can be readily extended to accommodate larger and
more diverse structural classes as needed. Validation tests
conducted on experimentally derived PXRD patterns have
exhibited excellent performance. Furthermore, we have
conducted an analysis of the model interpretability to elucidate
how internal feature extraction processes influence the
generation of MOF structures. This work provides a
foundation for autonomous PXRD-based structural analysis
in the design of MOFs.

B RESULTS

Architecture of Xrd2Mof. The Xrd2Mof model is
composed of three primary phases: feature extraction, coarse-
grained structure generation, and building block assembly.
During the feature extraction process (Figure 2a), the MOF
structures in the training set are represented by the coarse-
grained structures via MOFid code,” which takes the metal
nodes and organic linkers as the building blocks. A multimodal
feature extraction approach based on Contrastive Language-
Image Pretraining (CLIP)"* model was developed, with the
information on MOF building blocks and XRD pattern serving
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Figure 2. The architecture of the Xrd2Mof. (a) Framework of the pretrained feature extraction model. The model uses input data including
simulated XRD patterns, metal nodes, and organic linkers extracted from the structure database. Each feature type is individually processed by
dedicated neural networks, whose outputs are combined through a fusion layer and projected into feature vectors via a projection layer. Finally,
similarity scores are computed against structural vectors. After training, this module is frozen to provide fixed feature vectors. (b) Overall workflow
of Xrd2Mof. Initially, feature extraction is performed to obtain feature vectors, which subsequently guide coarse-grained structural generation. The
constructed structures are then matched with building blocks retrieved from the database. Final atomic structures are assembled and optimized
using a force-field method. The model captures key structural features and generates candidate structures following predefined chemical principles.
Due to inherent stochasticity in the process, multiple candidate structures are produced for further selection. (c) Framework of the structure
generation model. The model employs feature vectors as conditions for crystal structure generation. During training, atom valences and types are
initialized according to chemical prior knowledge and iteratively refined, guided by feature vectors and diffusion time steps. The generation phase
repeats the process in reverse.

as semantic description, and the coarse-grained structures of Information of the simulated XRD pattern was extracted using
MOFs as visual representation. For metal nodes, fundamental a CNN model. Different from the previous studies,>”*™* we
properties of the metal elements were extracted from the assume that the coordinate information pertaining to organic
pymatgen44 library, while for organic linkers, a graph neural linkers holds significantly less importance in comparison to
network was employed to encode the geometric structures. that of metal nodes, and consequently, the coordinates of

C https://doi.org/10.1021/jacs.5¢16416
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Figure 3. Performance of the pretrained feature extraction model. (a) Illustration of the coarse-graining procedure specifically developed for
MOF structures. (b) Comparison between simulated XRD patterns before and after coarse-graining. (c) Confusion matrix obtained from 100
randomly selected structural classes from the test set, where diagonal elements represent correctly classified samples. (d) Matching accuracy of the

pretrained model as a function of numbers of candidate structures.

organic linkers were simplified to their centroids. This aligns
with our general understanding that the primary peaks in XRD
patterns are predominantly attributed to heavy atoms,
particularly those belonging to metal nodes. This is the main
reason why we use a coarse-grained representation strategy for
MOF structures. Here, the atomic positions in coarse-grained
representations were abstracted into three-dimensional coor-
dinates of connection points and fed into a CNN (named as
Atom CNN), while the unit-cell parameters were fed into
another CNN (named as Lattice CNN). The typical cosine
similarity was used as the matching scheme in CLIP to
compare the embeddings of such semantic description and
visual representation.

After feature extraction, a generative model was employed to
generate the coarse-grained structure for a targeted XRD
pattern along with the corresponding information on building
blocks as additional inputs (Figure 2b). We adopted the Stable
Diffusion architecture from MOFdiff,*” which can directly
incorporate the above embeddings into the structure
generation process (Figure 2c). To determine the number of
connection points, the charge conservation principle was
applied to establish minimal metal-to-linker ratios, in which the
valence states of metal ions were explicitly specified according
to experimental precursors, while the valence states of organic
linkers were deduced based on a mapping table from SMILES

strings to standard valence-specific linker units in a
comprehensive database. We note that during the training of
this generative model, the positions of metal nodes were
prioritized over the organic linkers in input vectors, which can
facilitate the assembly of building blocks in a more rational
manner as guided by the XRD patterns.

Finally, in the building block assembly process, we have
established a database containing approximately 400,000
building blocks and organized them into a K-Dimensional
Tree search library indexed by the Extended Connectivity
FingerPrints (ECFP). For single-linker MOFs (~60% of our
data set), the organic linkers were proportionally and
sequentially allocated to the connection points in coarse-
grained structures. For dual-linker MOFs (~26% of the data
set), linker distribution was explicitly predicted via Ewald
summation method, which can identify the most energetically
favorable configurations among the extensive combinatorial
possibilities. Afterward, we used ten candidate structures for
further optimization via Universal Force Field (UFF),
generating physically plausible MOF structures as the output
of Xrd2Mof.

Model Performance. The CLIP model serves as the
foundation for subsequent structure generation and assembly
processes, and thus it is of paramount importance in ensuring
its reliability. We note that only coarse-grained structures
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Figure 4. Performance of the structure generation model. (a) Main-peak matching rates for single-linker and dual-linker MOFs upon matching
different numbers of candidate structures. (b) Distribution of cosine similarity between the predicted and real XRD patterns upon matching
different numbers of candidate structures. (c) Structure generation from real experimental data, and the corresponding XRD patterns (ground truth
XRD pattern corresponds to the one directly simulated from the ground truth MOF structure).

containing fewer than 50 connection points were taken into
consideration in our model, corresponding to 99% of all the
MOF structures in the database. MOF structures containing
hundreds and even thousands of atoms can be included in the
model (Figure 3a), which significantly surpasses that of the
previous report.”” Simulated XRD patterns of coarse-grained
structures exhibited high fidelity to those of atomic structures,
confirming the reliable extraction of essential diffraction
features (Figure 3b). Differences in peak splitting are observed,
which is likely due to the negligence of atomic detail in organic
linkers. To ensure robust model generalization, the training
data set was augmented by random functionalization of linker
structures and substitution of metal nodes (Table S1, S2, and
Figure S1). By evaluating the feature extraction performance
on a test set containing ~ 10,000 MOFs, we generated
encoded features and identified the top 10 most similar MOFs
for each query structure, achieving an average matching
accuracy of 90.3%, demonstrating outstanding classification
performance (Figures 3c,d).

The stochastic nature of Stable Diffusion model implies that
an increased number of candidate structures could correspond-
ingly increase the likelihood of reproducing the ground truth
crystal structure. Therefore, four primitive structures were
generated with various numbers of connection points satisfying
charge-neutrality rules, subsequently producing a series of
candidate crystal structures. To quantify the prediction
accuracy, we implement a main-peak matching scheme, in
which the primary diffraction peaks in the targeted XRD
pattern are compared to those calculated from the candidate
structures, using a predefined angular tolerance to ensure that
each peak is matched only once. We establish a threshold
wherein the two XRD patterns can be considered identical
when a minimum of ten peaks exhibit a high degree of
alignment (Figure S2). Figure 4a shows the success rates of
Xrd2Mof for single-linker and dual-linker MOFs upon
matching different numbers of candidate structures. Here,
the success rate is defined as the proportion of test-set samples
for which at least one predicted candidate MOF structure

yields an XRD pattern that matches well with the simulated
XRD pattern of the ground-truth structure. We note that upon
matching 10 candidate structures, success rates of 93.4% and
96.2% are achieved for single-linker and dual-linker species,
respectively, which are close to that of matching 50 candidate
structures. Surprisingly, dual-linker systems demonstrate
slightly higher success rates as compared to their single-linker
counterparts. This can be attributed to the fact that the fitting
accuracy of deep generative models tends to increase with the
number of independent variables, which corresponds to a more
expressive representation space (Figure S3). We note that high
matching rates are also obtained based on the average cosine
similarity values between the targeted XRD pattern and the
simulated ones of the candidate structures (Figure 4b).
Consequently, we use the results of 10 candidate structures
as the final output of Xrd2Mof. It is also noteworthy that the
primary diffraction peaks mainly locate in the low-angle region
(260 ranging from S° to 30° shown in Figure S4 and SS),
rendering the main-peak matching scheme more reliable than
the cosine similarity scheme in comparing two XRD patterns.
Therefore, we employ the former one to evaluate the model
performance in this study.

To further optimize model performance, multiple architec-
tural configurations and XRD processing strategies have been
evaluated, along with the assessments of different candidate
numbers used in Ewald summation calculations (Figure S6).
Since the model is trained on simulated XRD patterns, it is
probable that its performance will be reduced when applied on
experimental results. However, as exemplified by one of the
reported XRD pattern (CSD ID: ALICEE)*” shown in Figure
4c, the generated MOF structure exhibits high similarity to the
ground truth structure, despite minor angular discrepancies
between the predicted and the real XRD patterns. We note
that some additional peaks emerge in the predicted XRD
pattern, which is likely attributable to the error of linker
orientation as predicted in the building block assembly process.
Nevertheless, it is evident that Xrd2Mof can provide highly
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Figure S. Grad-CAM analysis of the feature extraction process. (a) XRD patterns and Grad-CAM heatmap for ABADUG in the test set. (b)
XRD patterns and the corresponding Grad-CAM heatmaps for two MOFs with the same building blocks but different distributions.
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Figure 6. Comparison of framework topology in the structure generation process. (a) Structure generation result of a single-linker MOF, and
the corresponding simulated XRD patterns. The highlighted peaks in XRD patterns are associated with the framework structure. (b) Structure
generation result of a dual-linker MOF, and the corresponding simulated XRD patterns.

accurate and robust structure generation results from the
experimental XRD patterns of MOFs.

Role of Coarse Graining. Here, we examine the
significance of coarse-grained representation of MOFs in the
predictive power of Xrd2Mof. Gradient-weighted Class
Activation Mapping (Grad-CAM)*" is employed to facilitate
this analysis, which can help assess whether the prediction
accuracy arises from capturing the discriminative features or
from overfitting to artifacts in the data.””*’ Grad-CAM can
visualize the attention distribution of a trained convolutional
architecture. When applied to XRD patterns, it highlights the

most discriminative 20 regions, thereby elucidating the
decision-making process of the CLIP model in Xrd2Mof.

We have randomly selected a MOF structure from CSD
(ID: ABADUG™), as displayed in Figure Sa. Notably, the
primary diffraction peaks simulated from its coarse-grained
structure closely correspond to those simulated from its atomic
structure, indicating that coarse graining can effectively retain
most of the structure-relevant characteristics inherent in the
XRD patterns. The Grad-CAM map shows substantially high
attention on these primary diffraction peaks, demonstrating
that the feature extraction process (i.e., the CLIP model) can
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successfully capture the most crucial 26 regions for XRD
interpretation. This result suggests the critical role of coarse
graining in mapping the relationship connecting an XRD
pattern and the corresponding MOF structure. We have also
compared two MOFs with the same building blocks, as shown
in Figure Sb. The distribution of organic linkers exhibits
distinct patterns between these two structures, whereas the
distribution of metal nodes is relatively similar. This leads to
only minor discrepancies in XRD patterns, mainly charac-
terized by variations in the secondary peaks. Nevertheless, the
Grad-CAM maps indicate that the CLIP model can
successfully discern these discrepancies, which is likely due
to the difference in coarse-grained structures for both MOFs.
The above results indicate that the high accuracy of the CLIP
model is closely associated with the coarse-grained representa-
tion scheme.

The significance of coarse graining in the structure
generation process of Xrd2Mof can be illustrated by the two
examples shown in Figure 6. The coarse-grained structure
contains the information about framework topology while
discarding the information on atomic positions within the
building blocks. This leads to a substantially reduced degrees
of freedom, potentially facilitating the model’s ability to discern
the inherent mapping between XRD patterns and MOF
structures. We note that the training data set in our work
remains inadequate to directly generate the atomic positions of
a crystal structure comprising hundreds of atoms, which is the
prevalent scenario for most MOFs in CSD. By using coarse
graining, the model focuses on the positions of building blocks
rather than atoms, and consequently the data on MOF
structures are compressed by about an order of magnitude.
This strategy can enable the diffusion model to accurately
reproduce the local connectivity of building blocks (i.e.,
framework topology) in the ground truth structure. For the
single-linker example shown in Figure 6a, the predicted
structure matches well with the ground truth structure in
that each metal node is connected to two organic linkers, and
each linker binds with two metal ions. This consistency in
framework topology results in a striking similarity between the
predicted and ground truth XRD patterns. For the dual-linker
case in Figure 6b, the Ewald summation method employed in
the assembly process facilitates the coarse-grained representa-
tion scheme, thereby enabling the generation of a MOF
structure that retains the same framework topology as the
ground truth. Despite the apparent discrepancy in the
conformation of organic linkers, the predicted XRD pattern
exhibits a high degree of consistency with the ground truth
pattern. These results demonstrate that the coarse-grained
representation scheme is essential in a generative model to
interpret the XRD patterns of MOFs.

B DISCUSSION

Automated self-driving laboratories are transforming the
traditional trial-and-error paradigm by enabling continuous
data-driven and feedback-controlled experimentation. Through
the integration of robotics, machine learning and real-time data
analytics, these systems can autonomously design, synthesize
and characterize materials with minimal human intervention,
substantially improving both the efficiency and reproducibility
of research workflows. Nowadays, significant achievements
have been made in the field of inorganic materials and organic
molecules.” > Analogous to the models designed for
inorganic compounds, generative Al models for MOFs

typically employ existing structure databases to simulate the
target property or characterization. They generally encounter a
substantial limitation on the maximum number of atoms in the
MOF structure, rendering them incapable of encompassing
numerous experimentally observed samples. Xrd2Mof ad-
dresses this challenge by explicitly incorporating a coarse
graining strategy, which provides chemical prior knowledge to
facilitate the feature extraction and structure generation
processes, finally resulting in promising accuracy in interpret-
ing the XRD patterns for nearly all MOFs in CSD. This
advantage positions Xrd2Mof as a useful component in
automated self-driving laboratories for the development of
MOFs. By reconstructing the atomic structures directly from
readily accessible PXRD data in high-throughput synthesis
experiments, Xrd2Mof can substantially expedite the exper-
imentation process, thereby enhancing efficiency in the
discovery of MOFs with exceptional performance. More
importantly, since Xrd2Mof covers nearly all kinds of
framework topologies, it can be seamlessly integrated into
the existing high-throughput pipelines for various MOFs.

It is noteworthy that the practical implementation of this
model assumes the availability of structural information for the
precursor metal and linker components employed during MOF
synthesis, particularly the elemental identities of the metal
nodes and the SMILES strings of the organic linkers. While the
compositional information on metal nodes is readily available
prior to synthesis, it is crucial to emphasize that the
information on organic molecules in precursors can also be
employed as reliable inputs for the linkers in MOFs. This is
due to the fact that organic linkers usually do not decompose
during the synthesis of MOFs, which generally requires mild
conditions well below the thermal decomposition temperatures
of most linkers. Organic molecules in the precursors can retain
their molecular integrity and form the framework by
coordinating with metal ions or clusters via coordination
bonds. Specifying the constituents of metal nodes and the
structures of organic linkers can direct the generative model
toward more plausible chemical space, thereby limiting the
effective search space from all conceivable structures to a more
feasible subset. Such strategy can significantly reduce the
probability of generating chemically unreasonable configura-
tions and thus improve the prediction accuracy of the model.
Moreover, as mentioned above, the sharp peaks in PXRD
patterns of MOFs generally correspond to the metal-to-metal
distances and unit cell dimensions, while organic linkers
contribute little intensity. The structural information on
organic linkers serving as inputs to the model can successfully
complement this inherent deficiency in PXRD interpretation.

Nevertheless, there are still some limitations in Xrd2Mof.
First, in the absence of reliable information on the metal and
linker components, the model is incapable of generating a
structure corresponding to the target PXRD pattern. There are
still instances where organic linkers undergo in situ reactions or
decomposition to form new species during MOF synthesis.
Although these reactions are typically intentionally designed
rather than occurring accidentally, it is crucial to provide the
correct SMILES strings, as otherwise the predictions of MOF
structures will be inaccurate. Second, many MOFs are
synthesized in specific solution environments, and their
experimental XRD patterns typically contain unavoidable
impurity signals. Xrd2Mof does not account for these solvent
molecules, even though they can be present in MOF
structures. This is because incorporating these molecules
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(most of them do not belong to the framework topology) into
the model during training would significantly reduce model
accuracy in structure generation. Nevertheless, we have
explicitly examined the model’s robustness by conducting
tests on the simulated PXRD patterns where impurity peaks
are superimposed over those of the pristine sample. The results
shown in Figure S7 and S8 demonstrate that the overall
matching success rate can still reach 90.6% for the generation
of MOF structures. Third, the validation of experimental XRD
patterns remains insufficient. Active learning loops are
therefore warranted for future studies to incorporate more
experimental data into the training of Xrd2Mof.

B CONCLUSION

This work introduces Xrd2Mof, a generative Al model
designed to reconstruct the crystal structures directly from
PXRD patterns of MOFs. Xrd2Mof can be seamlessly
integrated into high-throughput experimental pipelines,
effectively bridging the gap between material characterization
and structural interpretation. By employing the coarse graining
strategy, the model can be directly applied to a diverse range of
MOF structures without the requirement for retraining,
achieving a balance between accuracy and computational
efficiency. Upon matching 10 candidate structures, an overall
success rate of >93% is achieved for interpreting the XRD
patterns of both single-linker and dual-linker MOFs. The
findings presented in this research can be readily extended
beyond XRD patterns, potentially to characterization techni-
ques such as infrared, Raman, or nuclear magnetic resonance
spectra, thus providing a foundation for future studies on the
integration of multimodal techniques in self-driving laborato-
ries.
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